Wedge Dislocation in the Geometric Theory of Defects
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 2, pp. 338-352
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a wedge dislocation in the framework of elasticity theory and the geometric theory of defects. We show that the geometric theory quantitatively reproduces all the results of elasticity theory in the linear approximation. The coincidence is achieved by introducing a postulate that the vielbein satisfying the Einstein equations must also satisfy the gauge condition, which in the linear approximation leads to the elasticity equations for the displacement vector field. The gauge condition depends on the Poisson ratio, which can be experimentally measured. This indicates the existence of a privileged reference frame, which denies the relativity principle.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
dislocation, Riemann–Cartan geometry.
                    
                  
                
                
                @article{TMF_2003_135_2_a13,
     author = {M. O. Katanaev},
     title = {Wedge {Dislocation} in the {Geometric} {Theory} of {Defects}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {338--352},
     publisher = {mathdoc},
     volume = {135},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a13/}
}
                      
                      
                    M. O. Katanaev. Wedge Dislocation in the Geometric Theory of Defects. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 2, pp. 338-352. http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a13/
