Wedge Dislocation in the Geometric Theory of Defects
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 2, pp. 338-352

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a wedge dislocation in the framework of elasticity theory and the geometric theory of defects. We show that the geometric theory quantitatively reproduces all the results of elasticity theory in the linear approximation. The coincidence is achieved by introducing a postulate that the vielbein satisfying the Einstein equations must also satisfy the gauge condition, which in the linear approximation leads to the elasticity equations for the displacement vector field. The gauge condition depends on the Poisson ratio, which can be experimentally measured. This indicates the existence of a privileged reference frame, which denies the relativity principle.
Keywords: dislocation, Riemann–Cartan geometry.
@article{TMF_2003_135_2_a13,
     author = {M. O. Katanaev},
     title = {Wedge {Dislocation} in the {Geometric} {Theory} of {Defects}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {338--352},
     publisher = {mathdoc},
     volume = {135},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a13/}
}
TY  - JOUR
AU  - M. O. Katanaev
TI  - Wedge Dislocation in the Geometric Theory of Defects
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 338
EP  - 352
VL  - 135
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a13/
LA  - ru
ID  - TMF_2003_135_2_a13
ER  - 
%0 Journal Article
%A M. O. Katanaev
%T Wedge Dislocation in the Geometric Theory of Defects
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 338-352
%V 135
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a13/
%G ru
%F TMF_2003_135_2_a13
M. O. Katanaev. Wedge Dislocation in the Geometric Theory of Defects. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 2, pp. 338-352. http://geodesic.mathdoc.fr/item/TMF_2003_135_2_a13/