Wave Equations in Riemannian Spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 1, pp. 82-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

With regard to applications in quantum theory, we consider the classical wave equation involving the scalar curvature with an arbitrary coefficient $\xi$. General properties of this equation and its solutions are studied based on modern results in group analysis with the aim to fix a physically justified value of $\xi$. These properties depend essentially not only on the values of $\xi$ and the mass parameter but also on the type and dimension of the space. Form invariance and conformal invariance must be distinguished in general. A class of Lorentz spaces in which the massless equation satisfies the Huygens principle and its Green's function is free of a logarithmic singularity exists only for the conformal value of $\xi$. The same value of $\xi$ follows from other arguments and the relation to the known WKB transformation method that we establish.
Keywords: wave equation, curved space-time, Huygens principle.
Mots-clés : conformal invariance, conformal transformation
@article{TMF_2003_135_1_a3,
     author = {K. S. Mamaeva and N. N. Trunov},
     title = {Wave {Equations} in {Riemannian} {Spaces}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {82--94},
     year = {2003},
     volume = {135},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_135_1_a3/}
}
TY  - JOUR
AU  - K. S. Mamaeva
AU  - N. N. Trunov
TI  - Wave Equations in Riemannian Spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 82
EP  - 94
VL  - 135
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_135_1_a3/
LA  - ru
ID  - TMF_2003_135_1_a3
ER  - 
%0 Journal Article
%A K. S. Mamaeva
%A N. N. Trunov
%T Wave Equations in Riemannian Spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 82-94
%V 135
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2003_135_1_a3/
%G ru
%F TMF_2003_135_1_a3
K. S. Mamaeva; N. N. Trunov. Wave Equations in Riemannian Spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 135 (2003) no. 1, pp. 82-94. http://geodesic.mathdoc.fr/item/TMF_2003_135_1_a3/

[1] N. A. Chernikov, E. A. Tagirov, Ann. Inst. H. Poincaré. A, 9 (1968), 109 | MR | Zbl

[2] S. G. Mamaev, N. N. Trunov, TMF, 38 (1979), 345 | MR

[3] V. M. Mostepanenko, N. N. Trunov, Effekt Kazimira i ego prilozheniya, Energoatomizdat, M., 1990

[4] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[5] A. A. Grib, E. A. Poberii, Helv. Phys. Acta, 68 (1995), 380 | MR | Zbl

[6] I. H. Redmount, Phys. Rev. D, 60 (1999), 104004 | DOI | MR

[7] J. Lindig, Phys. Rev. D, 59 (1999), 064011 | DOI | MR

[8] A. A. Grib, S. G. Mamaev, V. M. Mostepanenko, Vakuumnye kvantovye effekty v silnykh polyakh, Atomizdat, M., 1988

[9] Yu. V. Pavlov, TMF, 126:1 (2001), 115 | DOI | MR | Zbl

[10] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[11] M. B. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[12] Zh. Adamar, Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978 | MR

[13] N. D. Birrel, P. Devis, Kvantovannye polya v iskrivlennom prostranstve-vremeni, Mir, M., 1984 | MR

[14] S. G. Mamaev, N. N. Trunov, YaF, 34 (1981), 1142

[15] S. G. Mamaev, N. N. Trunov, YaF, 37 (1983), 1603

[16] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika, Nauka, M., 1980

[17] A. A. Lobashev, N. N. Trunov, TMF, 120:1 (1999), 99 ; 124:3 (2000), 463 | DOI | MR | Zbl | DOI | MR | Zbl

[18] V. A. Fok, Teoriya prostranstva, vremeni i tyagoteniya, Fizmatizdat, M., 1961

[19] L. P. Eizenkhart, Rimanova geometriya, Inostrannaya literatura, M., 1948

[20] N. N. Trunov, K. S. Mamaeva, “Konformnye preobrazovaniya metriki i optimizatsiya metoda VKB”, X Rossiiskaya gravitatsionnaya konferentsiya, Tezisy dokladov (Vladimir, 20–27 iyunya, 1999), Rossiiskoe gravitatsionnoe obschestvo, M., 1999, 209