Radiation Recoil Problem for Classical Charged Dust Grains
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 2, pp. 254-272
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider several classical problems (Coulomb scattering, motion in a constant external electromagnetic field, Brownian motion) for the Sommerfeld model of an extended charged particle (“dust grain”). We find essential differences from the classical result in both quantitative aspects (a change of the angle in Coulomb scattering, decrease of the diffusion coefficient for a Brownian particle, deceleration of outspiraling of the “dust grain” in a cyclotron) and in qualitative aspects (occurrence of the tunneling effect through a potential barrier). These differences do not disappear as the size of the particle tends to zero. The equation of motion of an extended object therefore does not have a smooth limit transition to the Newton equation for a point.
Keywords: classical electrodynamics, radiation backreaction.
@article{TMF_2003_134_2_a7,
     author = {A. A. Vlasov},
     title = {Radiation {Recoil} {Problem} for {Classical} {Charged} {Dust} {Grains}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {254--272},
     year = {2003},
     volume = {134},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a7/}
}
TY  - JOUR
AU  - A. A. Vlasov
TI  - Radiation Recoil Problem for Classical Charged Dust Grains
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 254
EP  - 272
VL  - 134
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a7/
LA  - ru
ID  - TMF_2003_134_2_a7
ER  - 
%0 Journal Article
%A A. A. Vlasov
%T Radiation Recoil Problem for Classical Charged Dust Grains
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 254-272
%V 134
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a7/
%G ru
%F TMF_2003_134_2_a7
A. A. Vlasov. Radiation Recoil Problem for Classical Charged Dust Grains. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 2, pp. 254-272. http://geodesic.mathdoc.fr/item/TMF_2003_134_2_a7/

[1] H. Lorentz, The Theory of Electron, 2nd edition, Teubner, Leipzig, 1916; M. Abragam, Electromagnetische Theorie der Strahlung, Teubner, Leipzig, 1905

[2] A. I. Nikishov, ZhETF, 110:2(8) (1996), 511 ; Г. Ф. Ефремов, ЖЭТФ, 114:5(11) (1998), 1661 | MR

[3] F. Rohrlich, Am. J. Phys., 65(11) (1997), 1051 ; Phys. Rev. D, 60 (1999), 084017 | DOI | DOI | MR

[4] F. Denef et al., Phys. Rev. E, 56 (1997), 3654 | DOI

[5] A. A. Vlasov, Vestn. MGU. Ser. 3. Fizika, astronomiya, 1998, no. 5, 17 | MR

[6] A. A. Vlasov, Vestn. MGU. Ser. 3. Fizika, astronomiya, 2001, no. 6, 15 | MR

[7] P. Dirac, Proc. Roy. Soc. A, 167 (1938), 148 | DOI | Zbl

[8] F. Rohrlich, Classical Charged Particles, Addison-Wesley, Reading, Mass., 1965 | MR | Zbl

[9] D. D. Ivanenko, A. A. Sokolov, Klassicheskaya teoriya polya, GITTL, M., 1949

[10] A. A. Sokolov, I. M. Ternov, Relyativistskii elektron, Nauka, M., 1982

[11] N. P. Klepikov, UFN, 146 (1985), 317 | DOI

[12] S. Parrott, Relativistic Electrodynamics and Differential Geometry, Springer, New York, 1987 | MR | Zbl

[13] T. Erber, Fortschr. Phys., 9 (1961), 342 | DOI | MR

[14] P. Pearle, Electromagnetism, ed. D. Tepliz, Plenum, New York, 1982, 211 | DOI

[15] A. Yaghjian, Relativistic Dynamics of a Charged Sphere, Lecture Notes in Physics, 11, Springer, Berlin, 1992

[16] A. Sommerfeld, Gottingen Nachrichten, 29 (1904); 363 (1904) ; 201 (1905) | Zbl | Zbl

[17] J. Huschilt, W. Baylis, Phys. Rev. D, 17 (1978), 985 ; E. Comay, J. Phys. A, 29 (1996), 2111 | DOI | DOI | Zbl

[18] I. A. Kvasnikov, Termodinamika i statisticheskaya fizika, Ch. 2, MGU, M., 1988 | MR

[19] A. A. Logunov, Teoriya gravitatsionnogo polya, Nauka, M., 2000 | MR