Integrable Structure Behind the WDVV Equations
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 18-31
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An integrable structure behind the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations is identified with the reduction of the Riemann–Hilbert problem for the homogeneous loop group $\widehat{GL}(N,\mathbb C)$. The reduction requires the dressing matrices to be fixed points of an order-two loop group automorphism resulting in a subhierarchy of the $\widehat{gl}(N,\mathbb C)$ hierarchy containing only odd-symmetry flows. The model has Virasoro symmetry; imposing Virasoro constraints ensures the homogeneity property of the Darboux–Egoroff structure. Dressing matrices of the reduced model provide solutions of the WDVV equations.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
WDVV equations, dressing, Darboux–Egoroff metrics, Kadomtsev–Petviashvili hierarchies, tau functions, Riemann–Hilbert factorization.
                    
                  
                
                
                @article{TMF_2003_134_1_a2,
     author = {Kh. Aratin and Zh. van de Ler},
     title = {Integrable {Structure} {Behind} the {WDVV} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {18--31},
     publisher = {mathdoc},
     volume = {134},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a2/}
}
                      
                      
                    Kh. Aratin; Zh. van de Ler. Integrable Structure Behind the WDVV Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 134 (2003) no. 1, pp. 18-31. http://geodesic.mathdoc.fr/item/TMF_2003_134_1_a2/
