Classical Gauge Theory of Gravity
Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 2, pp. 318-328 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical theory of gravity is formulated as a gauge theory on a frame bundle with spontaneous symmetry breaking caused by the existence of Dirac fermionic fields. The pseudo-Reimannian metric (tetrad field) is the corresponding Higgs field. We consider two variants of this theory. In the first variant, gravity is represented by the pseudo-Reimannian metric as in general relativity theory; in the second variant, it is represented by the effective metric as in Logunov's relativistic theory of gravity. The configuration space, Dirac operator, and Lagrangians are constructed for both variants.
Keywords: gravity, gauge field, Higgs field, spinor field.
@article{TMF_2002_132_2_a9,
     author = {G. A. Sardanashvily},
     title = {Classical {Gauge} {Theory} of {Gravity}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {318--328},
     year = {2002},
     volume = {132},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_132_2_a9/}
}
TY  - JOUR
AU  - G. A. Sardanashvily
TI  - Classical Gauge Theory of Gravity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 318
EP  - 328
VL  - 132
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_132_2_a9/
LA  - ru
ID  - TMF_2002_132_2_a9
ER  - 
%0 Journal Article
%A G. A. Sardanashvily
%T Classical Gauge Theory of Gravity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 318-328
%V 132
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_132_2_a9/
%G ru
%F TMF_2002_132_2_a9
G. A. Sardanashvily. Classical Gauge Theory of Gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 132 (2002) no. 2, pp. 318-328. http://geodesic.mathdoc.fr/item/TMF_2002_132_2_a9/

[1] R. Utiyama, Phys. Rev., 101 (1956), 1597 | DOI | MR | Zbl

[2] T. Kibble, J. Math. Phys., 2 (1961), 212 | DOI | MR | Zbl

[3] D. Sciama, Rev. Mod. Phys., 36 (1964), 463 | DOI

[4] F. Hehl, P. von der Heyde, G. Kerlick, J. Nester, Rev. Mod. Phys., 48 (1976), 394 | DOI | MR

[5] E. Lord, Phys. Lett. A, 65 (1978), 1 | DOI

[6] F. Basombrio, Gen. Rel. Grav., 12 (1980), 109 | DOI | MR

[7] L. Norris, R. Fulp, W. Davies, Phys. Lett. A, 79 (1980), 278 | DOI | MR

[8] A. Tseitlin, Phys. Rev. D, 26 (1982), 3327 | DOI | MR

[9] T. Kawai, Gen. Rel. Grav., 18 (1986), 995 ; 19 (1987), 1285 | DOI | MR | Zbl | DOI | MR

[10] D. Ivanenko, G. Sardanashvily, Phys. Rep., 94 (1983), 1 | DOI | MR

[11] G. Sardanashvily, O. Zakharov, Gauge Gravitation Theory, World Scientific, Singapore, 1992 | MR

[12] F. Hehl, J. McCrea, E. Mielke, Y. Ne'eman, Phys. Rep., 258 (1995), 1 | DOI | MR

[13] A. Kadić, D. Edelen, A Gauge Theory of Dislocations and Disclinations, Springer, Berlin, 1983 | MR | Zbl

[14] C. Malyshev, Ann. Phys., 286 (2000), 249 | DOI | MR | Zbl

[15] G. Sardanashvily, M. Gogberashvily, Mod. Phys. Lett. A, 2 (1987), 609 | DOI

[16] L. Nikolova, V. Rizov, Rep. Math. Phys., 20 (1984), 287 | DOI | MR | Zbl

[17] M. Keyl, J. Math. Phys., 32 (1991), 1065 | DOI | MR | Zbl

[18] G. Sardanashvily, J. Math. Phys., 33 (1992), 1546 | DOI | MR

[19] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981 | MR

[20] V. Ogievetskii, I. Polubarinov, ZhETF, 48 (1965), 1625 | MR

[21] C. Isham, A. Salam, J. Strathdee, Ann. Phys., 62 (1970), 98 | DOI | MR

[22] A. Trautman, Czech. J. Phys. B, 29 (1979), 107 | DOI | MR

[23] G. Sardanashvily, Phys. Lett. A, 75 (1980), 257 | DOI | MR

[24] S. Avis, C. Isham, Commun. Math. Phys., 72 (1980), 103 | DOI | MR

[25] H. Lawson, M-L. Michelson, Spin Geometry, Princeton Univ. Press, Princeton, 1989 | MR

[26] R. Geroch, J. Math. Phys., 9 (1968), 1739 | DOI | MR | Zbl

[27] G. Wiston, Int. J. Theor. Phys., 11 (1974), 341 ; 12 (1975), 225 | DOI | MR | DOI

[28] G. Sardanashvily, Class. Quant. Grav., 14 (1997), 1371 | DOI | MR

[29] G. Sardanashvily, J. Math. Phys., 39 (1998), 4874 | DOI | MR | Zbl

[30] G. Sardanashvily, Int. J. Theor. Phys., 37 (1998), 1275 | DOI | MR

[31] L. Mangiarotti, G. Sardanashvily, Connections in Classical and Quantum Field Theory, World Scientific, Singapore, 2000 | MR | Zbl

[32] G. Sardanashvili, TMF, 114:3 (1998), 470 | DOI | MR | Zbl

[33] L. Dabrowski, R. Percacci, Commun. Math. Phys., 106 (1986), 691 | DOI | MR | Zbl

[34] S. Switt, J. Math. Phys., 34 (1993), 3825 | DOI | MR

[35] V. Ponomarev, Yu. Obukhov, Gen. Rel. Grav., 14 (1982), 309 | DOI | MR

[36] A. Logunov, Relativistic Theory of Gravity, Nova Science Publ., N.Y., 1998

[37] A. Logunov, Teoriya gravitatsionnogo polya, Nauka, M., 2001 | MR