Ergodicity of Particle Systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 3, pp. 419-431
Cet article a éte moissonné depuis la source Math-Net.Ru
We study shift ergodicity, mixing, and related problems for invariant measures of interacting particle systems. The models we consider here include ferromagnetic stochastic Ising models, voter models, contact processes, exclusion processes, three-opinion noisy biased voter models, multi-opinion voter models, etc. Our results answer some questions for these models. One of the main techniques involved is a duality argument.
@article{TMF_2002_131_3_a4,
author = {Jinwen Chen},
title = {Ergodicity of {Particle} {Systems}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {419--431},
year = {2002},
volume = {131},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a4/}
}
Jinwen Chen. Ergodicity of Particle Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 3, pp. 419-431. http://geodesic.mathdoc.fr/item/TMF_2002_131_3_a4/
[1] T. M. Liggett, Interacting Particle Systems, Springer, New York, 1985 | MR | Zbl
[2] E. D. Andjel, Trans. Am. Math. Soc., 318 (1990), 601–614 | DOI | MR | Zbl
[3] J. D. Deuschel, D. W. Stroock, Large Deviations, Academic Press, Boston, MA, 1989 | MR | Zbl
[4] S. R. S. Varadhan, Large Deviations and Applications, SIAM, Philadelphia, 1984 | MR
[5] D. Revuz, Markov Chains, North-Holland, Amsterdam, 1984 | MR | Zbl
[6] M. Katori, J. Phys. A, 27 (1994), 3191–3211 | DOI | MR | Zbl
[7] F. J. López, G. Sanz, Markov Process. Related Fields, 6:3 (2000), 305–328 | MR | Zbl