Quasi-Relativism, the Narrow-Gap Property, and Forced Electron Dynamics in Solids
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 1, pp. 72-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Narrow-gap semiconductors, used in quantum network engineering, are characterized by small effective electron masses on the Fermi level and hence by high electron mobility in the lattice. We construct an explicitly solvable model that clarifies one possible mechanism for small effective masses to appear. Another mathematical model constructed here describes a possible mechanism for using a traveling wave to control an alternating quantum current in a one-dimensional lattice.
@article{TMF_2002_131_1_a6,
     author = {B. S. Pavlov and A. A. Pokrovski and A. V. Strepetov},
     title = {Quasi-Relativism, the {Narrow-Gap} {Property,} and {Forced} {Electron} {Dynamics} in {Solids}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {72--83},
     year = {2002},
     volume = {131},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a6/}
}
TY  - JOUR
AU  - B. S. Pavlov
AU  - A. A. Pokrovski
AU  - A. V. Strepetov
TI  - Quasi-Relativism, the Narrow-Gap Property, and Forced Electron Dynamics in Solids
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 72
EP  - 83
VL  - 131
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a6/
LA  - ru
ID  - TMF_2002_131_1_a6
ER  - 
%0 Journal Article
%A B. S. Pavlov
%A A. A. Pokrovski
%A A. V. Strepetov
%T Quasi-Relativism, the Narrow-Gap Property, and Forced Electron Dynamics in Solids
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 72-83
%V 131
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a6/
%G ru
%F TMF_2002_131_1_a6
B. S. Pavlov; A. A. Pokrovski; A. V. Strepetov. Quasi-Relativism, the Narrow-Gap Property, and Forced Electron Dynamics in Solids. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 1, pp. 72-83. http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a6/

[1] R. Landauer, IBM J. for Research and Development, 1 (1957), 223–231 | DOI | MR

[2] C. W. J. Beenakker, H. van Houten, “Quantum transport in semiconductor nanostructures”, Solid State Physics, Advances in Research and Applications, 44, eds. H. Ehrenreich, D. Turnbull, Academic Press, San Diego, 1991, 1–228

[3] L. A. Girifalco, Statistical Physics of Materials, J. Wiley Sons, New York–London–Sydney–Toronto, 1973

[4] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, IL, M., 1960 | MR

[5] B. S. Pavlov, N. V. Smirnov, Vestn. LGU, 13:3 (1977), 217–223

[6] B. S. Pavlov, G. P. Miroshnichenko, Rezonansnyi kvantovyi tranzistor, Patent 2062530 (Rossiya), 12.03.1992

[7] B. S. Pavlov, G. Roach, A. Yafyasov, “Resonance scattering and design of quantum gates”, Unconventional Models of Computations, eds. C. S. Calude, J. Casti, M. J. Dinneen, Springer, Singapore, 1988, 336–351 | MR

[8] I. Antononiou, B. Pavlov, A. Yafyasov, “Quantum electronic devices, based on metal-dielectric transmission in low-dimensional quantum structures”, Combinatorics, Complexity, Logic, Proc. of DMTCS'96, eds. D. S. Bridges, C. Calude, J. Gibbons, S. Reeves, I. Witten, Springer, Singapore, 1996, 90–104 | MR

[9] B. S. Pavlov, A. A. Pokrovski, L. V. Prokhorov, “Light propagation in truncated periodic waveguide”, Progress Report, ESPRIT Project 28890 NTCONGS (July 1, 1998 – December 31, 1998) | Zbl

[10] B. S. Pavlov, A. A. Pokrovski, L. V. Prokhorov, “Quasi-stationary analysis of the effective fiber acoustooptic equation”, Progress Report, ESPRIT Project 28890 NTCONGS (January 1, 1999 – June 31, 1999) | Zbl

[11] B. S. Pavlov, UMN, 42:6 (1987), 99–131 | MR