Positons: Slowly Decreasing Analogues of Solitons
Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 1, pp. 44-61

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an introduction to positon theory, almost never covered in the Russian scientific literature. Positons are long-range analogues of solitons and are slowly decreasing, oscillating solutions of nonlinear integrable equations of the KdV type. Positon and soliton-positon solutions of the KdV equation, first constructed and analyzed about a decade ago, were then constructed for several other models: for the mKdV equation, the Toda chain, the NS equation, as well as the sinh-Gordon equation and its lattice analogue. Under a proper choice of the scattering data, the one-positon and multipositon potentials have a remarkable property: the corresponding reflection coefficient is zero, but the transmission coefficient is unity (as is known, the latter does not hold for the standard short-range reflectionless potentials).
@article{TMF_2002_131_1_a4,
     author = {V. B. Matveev},
     title = {Positons: {Slowly} {Decreasing} {Analogues} of {Solitons}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {44--61},
     publisher = {mathdoc},
     volume = {131},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a4/}
}
TY  - JOUR
AU  - V. B. Matveev
TI  - Positons: Slowly Decreasing Analogues of Solitons
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 44
EP  - 61
VL  - 131
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a4/
LA  - ru
ID  - TMF_2002_131_1_a4
ER  - 
%0 Journal Article
%A V. B. Matveev
%T Positons: Slowly Decreasing Analogues of Solitons
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 44-61
%V 131
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a4/
%G ru
%F TMF_2002_131_1_a4
V. B. Matveev. Positons: Slowly Decreasing Analogues of Solitons. Teoretičeskaâ i matematičeskaâ fizika, Tome 131 (2002) no. 1, pp. 44-61. http://geodesic.mathdoc.fr/item/TMF_2002_131_1_a4/