Toward an Infinite-Component Field Theory with a Double Symmetry: Free Fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 68-86

Voir la notice de l'article provenant de la source Math-Net.Ru

We begin a study of possibilities of describing hadrons in terms of monolocal fields that transform under proper Lorentz group representations that are infinite direct sums of finite-dimensional irreducible representations. The additional requirement that the free-field Lagrangians be invariant under the secondary symmetry transformations generated by the polar or the axial four-vector representation of the orthochronous Lorentz group provides an effective mechanism for selecting the class of representations considered and eliminating an infinite number of arbitrary parameters allowed by the relativistic invariance of the Lagrangians.
@article{TMF_2001_129_1_a6,
     author = {L. M. Slad},
     title = {Toward an {Infinite-Component} {Field} {Theory} with a {Double} {Symmetry:} {Free} {Fields}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {68--86},
     publisher = {mathdoc},
     volume = {129},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a6/}
}
TY  - JOUR
AU  - L. M. Slad
TI  - Toward an Infinite-Component Field Theory with a Double Symmetry: Free Fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 68
EP  - 86
VL  - 129
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a6/
LA  - ru
ID  - TMF_2001_129_1_a6
ER  - 
%0 Journal Article
%A L. M. Slad
%T Toward an Infinite-Component Field Theory with a Double Symmetry: Free Fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 68-86
%V 129
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a6/
%G ru
%F TMF_2001_129_1_a6
L. M. Slad. Toward an Infinite-Component Field Theory with a Double Symmetry: Free Fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 68-86. http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a6/