@article{TMF_2001_129_1_a6,
author = {L. M. Slad},
title = {Toward an {Infinite-Component} {Field} {Theory} with a {Double} {Symmetry:} {Free} {Fields}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {68--86},
year = {2001},
volume = {129},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a6/}
}
L. M. Slad. Toward an Infinite-Component Field Theory with a Double Symmetry: Free Fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 68-86. http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a6/
[1] V. L. Ginzburg, I. E. Tamm, ZhETF, 17 (1947), 227
[2] I. M. Gelfand, A. M. Yaglom, ZhETF, 18 (1948), 703
[3] A. A. Komar, L. M. Slad, TMF, 1 (1969), 50 | Zbl
[4] I. T. Grodsky, R. F. Streater, Phys. Rev. Lett., 20 (1968), 695 | DOI | Zbl
[5] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR
[6] I. M. Gelfand, A. M. Yaglom, ZhETF, 18 (1948), 1094
[7] V. Bargmann, Math. Rev., 10 (1949), 583; 584
[8] E. Abers, I. T. Grodsky, R. E. Norton, Phys. Rev., 159 (1967), 1222 | DOI
[9] P. A. M. Dirac, Proc. Roy. Soc. A, 322 (1971), 435 | DOI
[10] L. M. Slad, TMF, 2 (1970), 67
[11] V. Pauli, “Printsip zapreta, gruppa Lorentsa, otrazhenie prostranstva, vremeni i zaryada”, Nils Bor i razvitie fiziki, eds. V. Pauli, L. Rozenfeld, V. Vaiskopf, IL, M., 1958, 46
[12] L. M. Slad, Mod. Phys. Lett. A, 15 (2000), 379 | DOI | MR
[13] I. M. Gelfand, R. A. Minlos, Z. Ya. Shapiro, Predstavleniya gruppy vraschenii i gruppy Lorentsa, ikh primeneniya, Fizmatgiz, M., 1958 | MR | Zbl