Hyperbolic Equations Admitting Differential Substitutions
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 1, pp. 63-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the first $n-1$ Laplace invariants of a scalar hyperbolic equation obtained from an equation of the same form under a differential substitution of the $n$th order have a zeroth order with respect to one of the characteristics. It follows that all Laplace invariants of an equation admitting substitutions of an arbitrarily high order must have a zeroth order. Three special cases of such equations are considered: those admitting autosubstitutions, those obtained from a linear equation by a differential substitution, and those with solutions depending simultaneously on both an arbitrary function of $x$ and an arbitrary function of $y$.
@article{TMF_2001_127_1_a4,
     author = {S. Ya. Startsev},
     title = {Hyperbolic {Equations} {Admitting} {Differential} {Substitutions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {63--74},
     year = {2001},
     volume = {127},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a4/}
}
TY  - JOUR
AU  - S. Ya. Startsev
TI  - Hyperbolic Equations Admitting Differential Substitutions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 63
EP  - 74
VL  - 127
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a4/
LA  - ru
ID  - TMF_2001_127_1_a4
ER  - 
%0 Journal Article
%A S. Ya. Startsev
%T Hyperbolic Equations Admitting Differential Substitutions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 63-74
%V 127
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a4/
%G ru
%F TMF_2001_127_1_a4
S. Ya. Startsev. Hyperbolic Equations Admitting Differential Substitutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 1, pp. 63-74. http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a4/

[1] A. V. Zhiber, V. V. Sokolov, S. Ya. Startsev, Dokl. RAN, 343:6 (1995), 746 | MR | Zbl

[2] V. V. Sokolov, A. V. Zhiber, Phys. Lett. A, 208 (1995), 303 | DOI | MR | Zbl

[3] I. M. Anderson, N. Kamran, Duke Math. J., 87:2 (1997), 265 | DOI | MR | Zbl

[4] I. M. Anderson, M. Juras, Duke Math. J., 89:2 (1997), 351 | DOI | MR | Zbl

[5] S. Ya. Startsev, TMF, 116:3 (1998), 336 | DOI | MR | Zbl

[6] S. Ya. Startsev, TMF, 120:2 (1999), 237 | DOI | MR | Zbl

[7] V. E. Adler, S. Ya. Startsev, TMF, 121:2 (1999), 271 | DOI | MR | Zbl

[8] M. Yu. Zvyagin, DAN SSSR, 316:1 (1991), 36 | MR | Zbl

[9] V. S. Novikov, TMF, 116:2 (1998), 193 | DOI | MR | Zbl

[10] V. V. Sokolov, S. I. Svinolupov, Eur. J. Appl. Math., 6 (1995), 145 | DOI | MR | Zbl

[11] A. V. Zhiber, A. B. Shabat, DAN SSSR, 277:1 (1984), 29 | MR | Zbl

[12] A. V. Zhiber, Izv. RAN. Ser. matem., 58:4 (1994), 33 | Zbl