Hyperbolic Equations Admitting Differential Substitutions
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 1, pp. 63-74
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that the first $n-1$ Laplace invariants of a scalar hyperbolic equation obtained from an equation of the same form under a differential substitution of the $n$th order have a zeroth order with respect to one of the characteristics. It follows that all Laplace invariants of an equation admitting substitutions of an arbitrarily high order must have a zeroth order. Three special cases of such equations are considered: those admitting autosubstitutions, those obtained from a linear equation by a differential substitution, and those with solutions depending simultaneously on both an arbitrary function of $x$ and an arbitrary function of $y$.
@article{TMF_2001_127_1_a4,
author = {S. Ya. Startsev},
title = {Hyperbolic {Equations} {Admitting} {Differential} {Substitutions}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {63--74},
publisher = {mathdoc},
volume = {127},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a4/}
}
S. Ya. Startsev. Hyperbolic Equations Admitting Differential Substitutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 1, pp. 63-74. http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a4/