Symmetries of Systems of the Hyperbolic Riccati Type
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 1, pp. 47-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathfrak G=\bigoplus_{i\in\mathbb Z}\mathfrak G_i$ be a Kac–Moody algebra, $U(x,y)$ be a function defined in $\mathfrak G_{-1}$, and $a$ be a constant element of $\mathfrak G_1$. We prove that the equation $U_{xy}=\bigl[[U,a],U_x\bigr]$ has two symmetry hierarchies connected by a gauge transformation. In particular, the well-known Konno equation appears in the case of the algebra $A_1^{(1)}$. The corresponding symmetry hierarchies contain the nonlinear Schrödinger and the Heisenberg magnet equations.
@article{TMF_2001_127_1_a3,
     author = {A. A. Bormisov and F. Kh. Mukminov},
     title = {Symmetries of {Systems} of the {Hyperbolic} {Riccati} {Type}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {47--62},
     year = {2001},
     volume = {127},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a3/}
}
TY  - JOUR
AU  - A. A. Bormisov
AU  - F. Kh. Mukminov
TI  - Symmetries of Systems of the Hyperbolic Riccati Type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 47
EP  - 62
VL  - 127
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a3/
LA  - ru
ID  - TMF_2001_127_1_a3
ER  - 
%0 Journal Article
%A A. A. Bormisov
%A F. Kh. Mukminov
%T Symmetries of Systems of the Hyperbolic Riccati Type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 47-62
%V 127
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a3/
%G ru
%F TMF_2001_127_1_a3
A. A. Bormisov; F. Kh. Mukminov. Symmetries of Systems of the Hyperbolic Riccati Type. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 1, pp. 47-62. http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a3/

[1] A. N. Leznov, M. V. Savelev, Gruppovye metody integrirovaniya nelineinykh dinamicheskikh sistem, Nauka, M., 1985 | MR | Zbl

[2] A. A. Bormisov, E. S. Gudkova, F. Kh. Mukminov, TMF, 113 (1997), 261 | DOI | MR

[3] E. S. Gudkova, F. Kh. Mukminov, V. V. Sokolov, “Zadacha Gursa dlya integriruemoi sistemy nelineinykh uravnenii giperbolicheskogo tipa”, Mezhdunarodnaya nauchnaya konferentsiya, posvyaschennaya 90-letiyu so dnya rozhdeniya professora S. P. Pulkina, Tezisy dokladov, ed. L. I. Bordunova, Pedagogicheskii universitet, Samara, 1997, 23

[4] V. G. Kats, Izv. AN SSSR. Ser. Matem., 32 (1968), 1323 | Zbl

[5] K. Konno, H. Kakuhata, Novel Solitonic Evolutions in a Coupled Integrable Dispersionless System, Preprint NUP-A-95-5, 1995 | MR | Zbl

[6] V. G. Drinfeld, V. V. Sokolov, “Algebry Li i uravneniya Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 24, 1984, 81 | MR | Zbl

[7] M. F. de Groot, T. J. Hollowood, J. L. Miramontes, Commun. Math. Phys., 145 (1992), 57 | DOI | MR | Zbl

[8] I. Z. Golubchik, V. V. Sokolov, TMF, 112:3 (1997), 375 | DOI | MR | Zbl

[9] A. V. Zhiber, Izv. RAN. Ser. Matem., 58:4 (1994), 33 | Zbl

[10] I. Z. Golubchik, V. V. Sokolov, TMF, 120:2 (1999), 248 | DOI | MR | Zbl

[11] K. Konno, H. Oono, J. Phys. Soc. Japan, 63 (1994), 377 | DOI

[12] V. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR | Zbl