Symmetries of Systems of the Hyperbolic Riccati Type
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 1, pp. 47-62

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak G=\bigoplus_{i\in\mathbb Z}\mathfrak G_i$ be a Kac–Moody algebra, $U(x,y)$ be a function defined in $\mathfrak G_{-1}$, and $a$ be a constant element of $\mathfrak G_1$. We prove that the equation $U_{xy}=\bigl[[U,a],U_x\bigr]$ has two symmetry hierarchies connected by a gauge transformation. In particular, the well-known Konno equation appears in the case of the algebra $A_1^{(1)}$. The corresponding symmetry hierarchies contain the nonlinear Schrödinger and the Heisenberg magnet equations.
@article{TMF_2001_127_1_a3,
     author = {A. A. Bormisov and F. Kh. Mukminov},
     title = {Symmetries of {Systems} of the {Hyperbolic} {Riccati} {Type}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {47--62},
     publisher = {mathdoc},
     volume = {127},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a3/}
}
TY  - JOUR
AU  - A. A. Bormisov
AU  - F. Kh. Mukminov
TI  - Symmetries of Systems of the Hyperbolic Riccati Type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 47
EP  - 62
VL  - 127
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a3/
LA  - ru
ID  - TMF_2001_127_1_a3
ER  - 
%0 Journal Article
%A A. A. Bormisov
%A F. Kh. Mukminov
%T Symmetries of Systems of the Hyperbolic Riccati Type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 47-62
%V 127
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a3/
%G ru
%F TMF_2001_127_1_a3
A. A. Bormisov; F. Kh. Mukminov. Symmetries of Systems of the Hyperbolic Riccati Type. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 1, pp. 47-62. http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a3/