A partition function representation through Grassmann variables
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 2, pp. 301-310
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We propose a formula for a classical partition function $Z_N$ that does not involve the Hamilton function of the system. In the general case, we avoid passing to canonical variables $(\mathbf p,\mathbf x)$ at the price of extending the space of Lagrange variables $(\mathbf v,\mathbf x)$ by introducing “additional velocities” $\bar{\mathbf u},\mathbf u$, which are the generators of a Grassmann algebra. In this space, the partition function $Z_N$ is the integral of a Gibbs-type distribution, whose explicit form is determined by the system Lagrange function. We calculate the partition function of a model system governed by the Darwin Lagrange function.
			
            
            
            
          
        
      @article{TMF_2001_126_2_a10,
     author = {L. F. Blazhievskii},
     title = {A partition function representation through {Grassmann} variables},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {301--310},
     publisher = {mathdoc},
     volume = {126},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a10/}
}
                      
                      
                    L. F. Blazhievskii. A partition function representation through Grassmann variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 2, pp. 301-310. http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a10/
