A partition function representation through Grassmann variables
Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 2, pp. 301-310 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a formula for a classical partition function $Z_N$ that does not involve the Hamilton function of the system. In the general case, we avoid passing to canonical variables $(\mathbf p,\mathbf x)$ at the price of extending the space of Lagrange variables $(\mathbf v,\mathbf x)$ by introducing “additional velocities” $\bar{\mathbf u},\mathbf u$, which are the generators of a Grassmann algebra. In this space, the partition function $Z_N$ is the integral of a Gibbs-type distribution, whose explicit form is determined by the system Lagrange function. We calculate the partition function of a model system governed by the Darwin Lagrange function.
@article{TMF_2001_126_2_a10,
     author = {L. F. Blazhievskii},
     title = {A partition function representation through {Grassmann} variables},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {301--310},
     year = {2001},
     volume = {126},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a10/}
}
TY  - JOUR
AU  - L. F. Blazhievskii
TI  - A partition function representation through Grassmann variables
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 301
EP  - 310
VL  - 126
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a10/
LA  - ru
ID  - TMF_2001_126_2_a10
ER  - 
%0 Journal Article
%A L. F. Blazhievskii
%T A partition function representation through Grassmann variables
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 301-310
%V 126
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a10/
%G ru
%F TMF_2001_126_2_a10
L. F. Blazhievskii. A partition function representation through Grassmann variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 2, pp. 301-310. http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a10/

[1] L. D. Landau, E. M. Lifshits, Teoriya polya, Nauka, M., 1973 | MR

[2] F. D. Kennedy, Amer. J. Phys., 40:1 (1972), 63 | DOI

[3] R. P. Gaida, EChAYa, 13:2 (1982), 427

[4] L. F. Blazhievskii, G. B. Gil, S. S. Semak, Zhurn. fiz. dosl., 1:1 (1996), 1 | MR

[5] J. E. Krizan, P. Havas, Phys. Rev., 128:12 (1962), 2916 | DOI | MR | Zbl

[6] J. E. Krizan, Phys. Rev. A, 140:5 (1965), 1155 | MR

[7] B. A. Trubnikov, V. P. Kosachev, ZhETF, 54:3 (1968), 939

[8] J. E. Krizan, Phys. Rev. A, 10:1 (1974), 298 | DOI

[9] L. F. Blazhievskii, Ukr. fiz. zhurn., 20:8 (1975), 1273 | MR

[10] R. D. Jones, A. Pytte, Phys. Fluids, 23:3 (1980), 269 | DOI | MR | Zbl

[11] R. Lapiedra, E. Santos, Phys. Rev. D, 23:10 (1981), 269 | DOI | MR

[12] J. E. Krizan, Phys. Rev. D, 25:2 (1982), 593 | DOI

[13] X. Barcons, R. Lapiedra, Phis. Rev. A, 28:3 (1983), 3030 | DOI

[14] I. M. Pavlotskii, Vvedenie v slaborelyativistskuyu statisticheskuyu mekhaniku, In-t prikladnoi matematiki, M., 1987

[15] H. Essen, Phys. Rev. E, 56:5 (1997), 5858 | DOI

[16] H. Essen, J. Phys. A, 32 (1999), 2297 | DOI | MR | Zbl

[17] L. F. Blazhievskii, TMF, 66:3 (1986), 409 | MR

[18] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1965 | MR

[19] Dzh. Maier, M. Geppert-Maier, Statisticheskaya mekhanika, Mir, M., 1980

[20] A. Isikhara, Statisticheskaya fizika, Mir, M., 1973 | MR