Hidden quantum $R$-matrix in the discrete-time classical Heisenberg magnet
Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 2, pp. 179-204

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct local $M$-operators for an integrable discrete-time version of the classical Heisenberg magnet by convoluting the twisted quantum trigonometric $4\times4$ $R$-matrix with certain vectors in its “quantum” space. Components of the vectors are identified with $\tau$-functions of the model. Hirota's bilinear formalism is extensively used. The construction generalizes the known representation of $M$-operators in continuous-time models in terms of Lax operators and the classical $r$-matrix.
@article{TMF_2000_125_2_a0,
     author = {A. V. Zabrodin},
     title = {Hidden quantum $R$-matrix in the discrete-time classical {Heisenberg} magnet},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--204},
     publisher = {mathdoc},
     volume = {125},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a0/}
}
TY  - JOUR
AU  - A. V. Zabrodin
TI  - Hidden quantum $R$-matrix in the discrete-time classical Heisenberg magnet
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 179
EP  - 204
VL  - 125
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a0/
LA  - ru
ID  - TMF_2000_125_2_a0
ER  - 
%0 Journal Article
%A A. V. Zabrodin
%T Hidden quantum $R$-matrix in the discrete-time classical Heisenberg magnet
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 179-204
%V 125
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a0/
%G ru
%F TMF_2000_125_2_a0
A. V. Zabrodin. Hidden quantum $R$-matrix in the discrete-time classical Heisenberg magnet. Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 2, pp. 179-204. http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a0/