Hidden quantum $R$-matrix in the discrete-time classical Heisenberg magnet
Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 2, pp. 179-204
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct local $M$-operators for an integrable discrete-time version of the classical Heisenberg magnet by convoluting the twisted quantum trigonometric $4\times4$ $R$-matrix with certain vectors in its “quantum” space. Components of the vectors are identified with $\tau$-functions of the model. Hirota's bilinear formalism is extensively used. The construction generalizes the known representation of $M$-operators in continuous-time models in terms of Lax operators and the classical $r$-matrix.
@article{TMF_2000_125_2_a0,
author = {A. V. Zabrodin},
title = {Hidden quantum $R$-matrix in the discrete-time classical {Heisenberg} magnet},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {179--204},
publisher = {mathdoc},
volume = {125},
number = {2},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a0/}
}
TY - JOUR AU - A. V. Zabrodin TI - Hidden quantum $R$-matrix in the discrete-time classical Heisenberg magnet JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 179 EP - 204 VL - 125 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a0/ LA - ru ID - TMF_2000_125_2_a0 ER -
A. V. Zabrodin. Hidden quantum $R$-matrix in the discrete-time classical Heisenberg magnet. Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 2, pp. 179-204. http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a0/