Exactly solvable quantum mechanical models with Stückelberg divergences
Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 1, pp. 91-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an exactly solvable quantum mechanical model with an infinite number of degrees of freedom that is an analogue of the model of $N$ scalar fields $(\lambda/N)(\varphi^a\varphi^a)^2$ in the leading order in $1/N$. The model involves vacuum and $S$-matrix divergences and also the Stückelberg divergences, which are absent in other known renormalizable quantum mechanical models with divergences (such as the particle in a $\delta$-shape potential or the Lee model). To eliminate divergences, we renormalize the vacuum energy and charge and transform the Hamiltonian by a unitary transformation with a singular dependence on the regularization parameter. We construct the Hilbert space with a positive-definite metric, a self-adjoint Hamiltonian operator, and a representation for the operators of physical quantities. Neglecting the terms that lead to the vacuum divergences fails to improve and, on the contrary, worsens the renormalizability properties of the model.
@article{TMF_2000_125_1_a3,
     author = {O. Yu. Shvedov},
     title = {Exactly solvable quantum mechanical models with {St\"uckelberg} divergences},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {91--106},
     year = {2000},
     volume = {125},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_125_1_a3/}
}
TY  - JOUR
AU  - O. Yu. Shvedov
TI  - Exactly solvable quantum mechanical models with Stückelberg divergences
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 91
EP  - 106
VL  - 125
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_125_1_a3/
LA  - ru
ID  - TMF_2000_125_1_a3
ER  - 
%0 Journal Article
%A O. Yu. Shvedov
%T Exactly solvable quantum mechanical models with Stückelberg divergences
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 91-106
%V 125
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2000_125_1_a3/
%G ru
%F TMF_2000_125_1_a3
O. Yu. Shvedov. Exactly solvable quantum mechanical models with Stückelberg divergences. Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 1, pp. 91-106. http://geodesic.mathdoc.fr/item/TMF_2000_125_1_a3/

[1] E. C. G. Stueckelberg, Phys. Rev., 81 (1951), 130 | DOI | MR | Zbl

[2] F. A. Berezin, L. D. Faddeev, DAN SSSR, 137 (1961), 1011 | MR | Zbl

[3] S. Albeverio, F. Gestezi, R. Kheeg-Kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR

[4] V. D. Koshmanenko, UMZh, 41 (1989), 3 | MR

[5] F. A. Berezin, Matem. sb., 60 (1963), 425

[6] K. Khepp, Teoriya perenormirovok, Nauka, M., 1974 | MR

[7] I. Ya. Arefeva, TMF, 12 (1972), 331 | MR

[8] O. I. Zavyalov, TMF, 16 (1973), 145 | Zbl

[9] Yu. M. Shirokov, TMF, 41 (1979), 291 | MR | Zbl

[10] Yu. G. Shondin, TMF, 74 (1988), 331 | MR | Zbl

[11] F. A. Berezin, Commun. Math. Phys., 63 (1978), 131 | DOI | MR | Zbl

[12] V. P. Maslov, O. Yu. Shvedov, Phys. Rev. D, 60 (1999), 105012 | DOI

[13] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[14] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | Zbl

[15] L. D. Faddeev, DAN SSSR, 152 (1963), 573 | MR

[16] V. P. Maslov, O. Yu. Shvedov, Tr. MIAN, 226, 1999, 112 | Zbl

[17] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1973 | MR | Zbl

[18] W. S. Faris, Self-Adjoint Operators, Lect. Notes in Math., 433, Springer, Berlin, 1975 | DOI | MR | Zbl

[19] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[20] M. Koboyashi, T. Kugo, Progr. Theor. Phys., 54 (1975), 1537 | DOI