Perturbation theory in the neighborhood of extended objects
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 433-451

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a unitary mapping to the “action–angle” variables, we formulate the perturbation theory with respect to the inverse coupling constant in the neighborhood of a nontrivial critical point of the action. We also describe the standard perturbation theory in this neighborhood.
@article{TMF_2000_123_3_a5,
     author = {I. D. Mandzhavidze and A. N. Sisakyan},
     title = {Perturbation theory in the neighborhood of extended objects},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {433--451},
     publisher = {mathdoc},
     volume = {123},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a5/}
}
TY  - JOUR
AU  - I. D. Mandzhavidze
AU  - A. N. Sisakyan
TI  - Perturbation theory in the neighborhood of extended objects
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 433
EP  - 451
VL  - 123
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a5/
LA  - ru
ID  - TMF_2000_123_3_a5
ER  - 
%0 Journal Article
%A I. D. Mandzhavidze
%A A. N. Sisakyan
%T Perturbation theory in the neighborhood of extended objects
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 433-451
%V 123
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a5/
%G ru
%F TMF_2000_123_3_a5
I. D. Mandzhavidze; A. N. Sisakyan. Perturbation theory in the neighborhood of extended objects. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 433-451. http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a5/