Perturbation theory in the neighborhood of extended objects
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 433-451
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using a unitary mapping to the “action–angle” variables, we formulate the perturbation theory with respect to the inverse coupling constant in the neighborhood of a nontrivial critical point of the action. We also describe the standard perturbation theory in this neighborhood.
@article{TMF_2000_123_3_a5,
     author = {I. D. Mandzhavidze and A. N. Sisakyan},
     title = {Perturbation theory in the neighborhood of extended objects},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {433--451},
     year = {2000},
     volume = {123},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a5/}
}
TY  - JOUR
AU  - I. D. Mandzhavidze
AU  - A. N. Sisakyan
TI  - Perturbation theory in the neighborhood of extended objects
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 433
EP  - 451
VL  - 123
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a5/
LA  - ru
ID  - TMF_2000_123_3_a5
ER  - 
%0 Journal Article
%A I. D. Mandzhavidze
%A A. N. Sisakyan
%T Perturbation theory in the neighborhood of extended objects
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 433-451
%V 123
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a5/
%G ru
%F TMF_2000_123_3_a5
I. D. Mandzhavidze; A. N. Sisakyan. Perturbation theory in the neighborhood of extended objects. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 433-451. http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a5/

[1] “Extended Systems in Field Theory”, Phys. Rep., 23:3 (1976), 237–374 ; R. Jackiw, Rev. Mod. Phys., 49 (1977), 681 | DOI | MR | DOI | MR

[2] A. Neveu, Phys. Rep., 23 (1976), 265 ; Л. Д. Фаддеев, ТМФ, 1 (1969), 3 ; J. L. Gervais, B. Sakita, Phys. Rev. D, 11 (1975), 1486 | DOI | MR | Zbl | DOI

[3] J. Manjavidze, A. Sissakian, Fields topology and observables, E-print hep-th/9811160

[4] I. D. Mandzhavidze, YaF, 45 (1987), 707 | MR

[5] S. F. Edwards, Y. V. Gulyaev, Proc. Roy. Soc. A, 279 (1964), 229 | DOI | MR

[6] K. Abraham, S. Marsden, Foundations of Mechanics, Benjamin/Cummings, Reading, Mass., 1978 ; В. И. Арнольд, Математические методы классической механики, Наука, М., 1989 | MR | Zbl | MR

[7] J.-L. Gervais, A. Jevicki, Nucl. Phys. B, 110 (1976), 93 ; N. H. Christ, T. D. Lee, Phys. Rev. D, 12 (1975), 1606 ; J. Godstone, R. Jackiw, Phys. Rev. D, 11 (1975), 1486 ; A. Hosoia, K. Kikkawa, Nucl. Phys. B, 101 (1975), 271 | DOI | MR | DOI | MR | DOI | DOI

[8] R. Dashen, B. Hasslacher, A. Neveu, Phys. Rev. D, 10 (1974), 4114 ; 4130; 4138 ; 11 (1975), 3424 | DOI | DOI | MR

[9] R. Mills, Propagators of Many-Particles Systems, Gordon Breach, New York, 1969

[10] V. Fok, Vestn. LGU, 16 (1959), 442

[11] B. M. Barbashov, S. P. Kuleshov, V. A. Matveev, V. N. Pervushin, A. N. Sissakian, A. N. Tavkhelidze, Phys. Lett. B, 33 (1970), 484 | DOI

[12] S. Smale, Invent. Math., 11:1 (1970), 45 | DOI | MR | Zbl

[13] V. E. Korepin, L. D. Faddeev, TMF, 25 (1975), 147 ; Л. Д. Фаддеев, “Гамильтонова интерпретация метода обратного преобразования рассеяния”, Солитоны, ред. Р. Буллаф, Ф. Кодри, Мир, М., 1983, 363 | MR