Distribution functions of binary solutions (exact analytic solution)
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 500-515
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We show that the general solution of the Ornstein–Zernike system of equations for multicomponent solutions has the form $h_{\alpha\beta}= \sum A_{\alpha\beta}^j\exp(-\lambda_jr)/r$, where $\lambda_j$ are the roots of the transcendental equation $1-\rho\Delta(\lambda_j)=0$ and the amplitudes $A_{\alpha\beta}^j$ can be calculated if the direct correlation functions are given. We investigate the properties of this solution including the behavior of the roots $\lambda_j$ and amplitudes $A_{\alpha\beta}^j$ in both the low-density limit and the vicinity of the critical point. Several relations on $A_{\alpha\beta}^j$ and $C_{\alpha\beta}$ are found. In the vicinity of the critical point, we find the state equation for a liquid, which confirms the Van der Waals similarity hypothesis. The expansion under consideration is asymptotic because we expand functions in series in eigenfunctions of the asymptotic Ornstein–Zernike equation valid at $r\to\infty$.
			
            
            
            
          
        
      @article{TMF_2000_123_3_a10,
     author = {G. A. Martynov},
     title = {Distribution functions of binary solutions (exact analytic solution)},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {500--515},
     publisher = {mathdoc},
     volume = {123},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a10/}
}
                      
                      
                    G. A. Martynov. Distribution functions of binary solutions (exact analytic solution). Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 500-515. http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a10/
