False vacuum decay in the de Sitter space–time
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 3, pp. 451-472 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the example of the decay of a metastable scalar field state (the conformal vacuum of scalar particles over a false classical vacuum) in the background de Sitter metric, we propose a method to account for the initial quantum field state in the semiclassical calculation of the path integral in a curved space–time. Using this method, we justify the Coleman–De Luccia approach to calculating the decay probability. We interpret the Hawking–Moss instanton as a limit of constrained instantons. We find that the inverse process of the true vacuum going into a false one can occur in the de Sitter space and find the expression for the corresponding probability.
@article{TMF_1999_120_3_a7,
     author = {V. A. Rubakov and S. M. Sibiryakov},
     title = {False vacuum decay in the {de~Sitter} space{\textendash}time},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {451--472},
     year = {1999},
     volume = {120},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_3_a7/}
}
TY  - JOUR
AU  - V. A. Rubakov
AU  - S. M. Sibiryakov
TI  - False vacuum decay in the de Sitter space–time
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 451
EP  - 472
VL  - 120
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_120_3_a7/
LA  - ru
ID  - TMF_1999_120_3_a7
ER  - 
%0 Journal Article
%A V. A. Rubakov
%A S. M. Sibiryakov
%T False vacuum decay in the de Sitter space–time
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 451-472
%V 120
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_120_3_a7/
%G ru
%F TMF_1999_120_3_a7
V. A. Rubakov; S. M. Sibiryakov. False vacuum decay in the de Sitter space–time. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 3, pp. 451-472. http://geodesic.mathdoc.fr/item/TMF_1999_120_3_a7/

[1] M. B. Voloshin, I. Yu. Kobzarev, L. V. Okun, YaF, 20 (1974), 1229

[2] S. Coleman, Phys. Rev. D, 15 (1977), 2929 | DOI

[3] C. G. Callan, S. Coleman, Phys. Rev. D, 16 (1977), 1792

[4] S. Coleman, V. Glaser, A. Martin, Commun. Math. Phys., 58 (1978), 211 | DOI | MR

[5] S. Coleman, F. De Luccia, Phys. Rev. D, 21 (1980), 3305 | DOI | MR

[6] A. H. Guth, E. Weinberg, Nucl. Phys. B, 212 (1983), 321 | DOI

[7] S. W. Hawking, I. G. Moss, Nucl. Phys. B, 224 (1983), 180 | DOI | MR

[8] A. A. Grib, S. G. Mamaev, V. M. Mostepanenko, Kvantovye effekty v intensivnykh vneshnikh polyakh, Atomizdat, M., 1980

[9] N. Birrell, P. Devis, Kvantovye polya v iskrivlennom prostranstve-vremeni, Mir, M., 1984 | MR

[10] A. D. Linde, Nucl. Phys. B, 216 (1983), 421 | DOI | MR

[11] A. A. Starobinskii, “Kosmologicheskie modeli s promezhutochnoi de sitterovskoi stadiei: teoriya i nablyudatelnye sledstviya”, Fundamentalnye vzaimodeistviya, ed. V. N. Ponomarev, MGPI, M., 1984, 55

[12] A. S. Goncharov, A. D. Linde, EChAYa, 17 (1986), 837 | MR

[13] S. Khoking, Dzh. Ellis, Krupnomasshtabnaya struktura prostranstva-vremeni, Mir, M., 1977

[14] A. D. Linde, Fizika elementarnykh chastits i inflyatsionnaya kosmologiya, Nauka, M., 1990 | MR

[15] V. A. Rubakov, D. T. Son, P. G. Tinyakov, Phys. Lett. B, 278 (1992), 279 ; A. N. Kuznetsov, P. G. Tinyakov, Phys. Rev. D, 56 (1997), 1156 | DOI | MR | DOI

[16] I. Affleck, Nucl. Phys. B, 191 (1981), 429 | DOI

[17] A. D. Linde, Phys. Lett. B, 131 (1983), 330 | DOI | MR

[18] N. Deruelle, Mod. Phys. Lett. A, 4 (1989), 1297 | DOI