Renormalization group, causality, and nonpower perturbation expansion in QFT
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 1, pp. 55-66
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The structure of the QFT expansion is studied in the framework of a new “invariant analytic” version of the perturbative QCD. Here, an invariant coupling constant $a(Q^2/\Lambda^2)=\beta_1\alpha_s(Q^2)/(4\pi)$ becomes a $Q^2$-analytic invariant function $a_{\mathrm{an}}(Q^2/\Lambda^2)\equiv\mathcal A(x)$, which, by construction, is free of ghost singularities because it incorporates some nonperturbative structures. In the framework of the “analyticized” perturbation theory, an expansion for an observable $F$, instead of powers of the analytic invariant charge $\mathcal A(x)$, may contain specific functions $\mathcal A_n(x)=\left[a^n(x)\right]_{\mathrm{an}}$, the "$n$th power of $a(x)$ analyticized as a whole." Functions $A_{n>2}(x)$ for small $Q^2\leq\Lambda^2$ oscillate, which results in weak loop and scheme dependences. Because of the analyticity requirement, the perturbation series for $F(x)$ becomes an asymptotic expansion á la Erdélyi using a nonpower set $\{\mathcal A_n(x)\}$. The probable ambiguities of the invariant analyticization procedure and the possible inconsistency of some of its versions with the renormalization group structure are also discussed.
			
            
            
            
          
        
      @article{TMF_1999_119_1_a4,
     author = {D. V. Shirkov},
     title = {Renormalization group, causality, and nonpower perturbation expansion in {QFT}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {55--66},
     publisher = {mathdoc},
     volume = {119},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a4/}
}
                      
                      
                    TY - JOUR AU - D. V. Shirkov TI - Renormalization group, causality, and nonpower perturbation expansion in QFT JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1999 SP - 55 EP - 66 VL - 119 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a4/ LA - ru ID - TMF_1999_119_1_a4 ER -
D. V. Shirkov. Renormalization group, causality, and nonpower perturbation expansion in QFT. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 1, pp. 55-66. http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a4/