Renormalization group, causality, and nonpower perturbation expansion in QFT
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 1, pp. 55-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure of the QFT expansion is studied in the framework of a new “invariant analytic” version of the perturbative QCD. Here, an invariant coupling constant $a(Q^2/\Lambda^2)=\beta_1\alpha_s(Q^2)/(4\pi)$ becomes a $Q^2$-analytic invariant function $a_{\mathrm{an}}(Q^2/\Lambda^2)\equiv\mathcal A(x)$, which, by construction, is free of ghost singularities because it incorporates some nonperturbative structures. In the framework of the “analyticized” perturbation theory, an expansion for an observable $F$, instead of powers of the analytic invariant charge $\mathcal A(x)$, may contain specific functions $\mathcal A_n(x)=\left[a^n(x)\right]_{\mathrm{an}}$, the "$n$th power of $a(x)$ analyticized as a whole." Functions $A_{n>2}(x)$ for small $Q^2\leq\Lambda^2$ oscillate, which results in weak loop and scheme dependences. Because of the analyticity requirement, the perturbation series for $F(x)$ becomes an asymptotic expansion á la Erdélyi using a nonpower set $\{\mathcal A_n(x)\}$. The probable ambiguities of the invariant analyticization procedure and the possible inconsistency of some of its versions with the renormalization group structure are also discussed.
@article{TMF_1999_119_1_a4,
     author = {D. V. Shirkov},
     title = {Renormalization group, causality, and nonpower perturbation expansion in {QFT}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {55--66},
     year = {1999},
     volume = {119},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a4/}
}
TY  - JOUR
AU  - D. V. Shirkov
TI  - Renormalization group, causality, and nonpower perturbation expansion in QFT
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 55
EP  - 66
VL  - 119
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a4/
LA  - ru
ID  - TMF_1999_119_1_a4
ER  - 
%0 Journal Article
%A D. V. Shirkov
%T Renormalization group, causality, and nonpower perturbation expansion in QFT
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 55-66
%V 119
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a4/
%G ru
%F TMF_1999_119_1_a4
D. V. Shirkov. Renormalization group, causality, and nonpower perturbation expansion in QFT. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 1, pp. 55-66. http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a4/

[1] D. V. Shirkov, I. L. Solovtsov, Kratkie soobscheniya OIYaI, no. 2[76], 1996, 5; E-print hep-ph/9604363

[2] D. V. Shirkov, I. L. Solovtsov, Phys. Rev. Lett., 79 (1997), 1209 ; E-print hep-ph/9704333 | DOI

[3] G. Källen, Helv. Phys. Acta, 25 (1952), 417 | MR | Zbl

[4] H. Lehmann, Nuovo Cim., 11 (1954), 342 | DOI | MR | Zbl

[5] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984 | MR

[6] N. N. Bogolyubov, A. A. Logunov, D. V. Shirkov, ZhETF, 37 (1959), 805 | Zbl

[7] D. V. Shirkov, Lett. Mat. Phys., 1 (1976), 179 ; Lett. Nuovo Cim., 18 (1977), 452 | DOI | MR | DOI

[8] K. A. Milton, I. L. Solovtsov, O. P. Solovtsova, Phys. Lett. B, 415 (1977), 104 ; E-print hep-ph/9706409 | DOI

[9] K. A. Milton, I. L. Solovtsov, O. P. Solovtsova, Phys. Lett. B, 439 (1998), 421 ; ; The Gross–Llewellyn Smith sum rule in the analytic approach to perturbative QCD, Preprint OKHEP-98-07, Oklahoma Univ.; E-print hep-ph/9809510E-print hep-ph/9809513 | DOI

[10] I. L. Solovtsov, D. V. Shirkov, Phys. Lett. B, 442 (1998), 344 ; E-print hep-ph/9711251 | DOI

[11] B. A. Magradze, “The gluon propagator in analytic perturbation theory”, Doklad na konferentsii “Kvarki-98” (Suzdal, Mai 1998)

[12] E. Gardi, G. Grunberg, M. Karliner, Can the QCD running coupling have a causal analyticity structure?, E-print hep-ph/9806462

[13] R. M. Corless et al., Adv. Comput. Math., 5 (1996), 329 | DOI | MR | Zbl

[14] D. V. Shirkov, Nucl. Phys. B (Proc. Suppl.), 64 (1998), 106 ; E-print hep-ph/9708480 | DOI

[15] A. V. Efremov, D. V. Shirkov, Chzhu Khun-yuan, ZhETF, 41 (1961), 603; A. V. Efremov, D. V. Shirkov, H. Y. Tzu, The pion-pion scattering at low energy, Preprint D-757, JINR, Dubna, 1960; Scientia Sinica, 10 (1961), 812

[16] D. V. Shirkov, V. A. Mescheryakov, V. V. Serebryakov, Dispersionnye teorii silnykh vzaimodeistvii pri nizkikh energiyakh, Nauka, M., 1967

[17] A. V. Nesterenko, Momenty strukturnykh funktsii v analiticheskom podkhode v kvantovoi khromodinamike, Diplomnaya rabota, Fiz. fak. MGU, 1998