Extension theory approach to scattering and annihilation in the $\bar pd$ system
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 74-94
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problems of three-particle scattering and annihilation in a system of three strongly interacting charged particles $(\bar ppn)$. We propose a model for the elastic scattering and the breakup process in the nucleon channel as well as for the annihilation into mesons. The mathematical foundation of the model is the extension theory of symmetrical operators. In the framework of this model, we construct the modified integral Faddeev equations with energy-dependent interactions taking the annihilation processes into account. These equations are uniquely resolvable for suitable classes of functions. On this basis, we deduce the corresponding differential Faddeev equations, construct asymptotic boundary conditions for wave function components, and formulate boundary problems for a system composed of nucleonic and mesonic channels. The results obtained are applied to scattering and annihilation processes in the three-particle system $\bar pd$.
@article{TMF_1999_118_1_a5,
author = {Yu. A. Kuperin and S. B. Levin},
title = {Extension theory approach to scattering and annihilation in the $\bar pd$ system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {74--94},
publisher = {mathdoc},
volume = {118},
number = {1},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a5/}
}
TY - JOUR AU - Yu. A. Kuperin AU - S. B. Levin TI - Extension theory approach to scattering and annihilation in the $\bar pd$ system JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1999 SP - 74 EP - 94 VL - 118 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a5/ LA - ru ID - TMF_1999_118_1_a5 ER -
Yu. A. Kuperin; S. B. Levin. Extension theory approach to scattering and annihilation in the $\bar pd$ system. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 74-94. http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a5/