Extension theory approach to scattering and annihilation in the $\bar pd$ system
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 74-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problems of three-particle scattering and annihilation in a system of three strongly interacting charged particles $(\bar ppn)$. We propose a model for the elastic scattering and the breakup process in the nucleon channel as well as for the annihilation into mesons. The mathematical foundation of the model is the extension theory of symmetrical operators. In the framework of this model, we construct the modified integral Faddeev equations with energy-dependent interactions taking the annihilation processes into account. These equations are uniquely resolvable for suitable classes of functions. On this basis, we deduce the corresponding differential Faddeev equations, construct asymptotic boundary conditions for wave function components, and formulate boundary problems for a system composed of nucleonic and mesonic channels. The results obtained are applied to scattering and annihilation processes in the three-particle system $\bar pd$.
@article{TMF_1999_118_1_a5,
     author = {Yu. A. Kuperin and S. B. Levin},
     title = {Extension theory approach to scattering and annihilation in the $\bar pd$ system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {74--94},
     year = {1999},
     volume = {118},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a5/}
}
TY  - JOUR
AU  - Yu. A. Kuperin
AU  - S. B. Levin
TI  - Extension theory approach to scattering and annihilation in the $\bar pd$ system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 74
EP  - 94
VL  - 118
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a5/
LA  - ru
ID  - TMF_1999_118_1_a5
ER  - 
%0 Journal Article
%A Yu. A. Kuperin
%A S. B. Levin
%T Extension theory approach to scattering and annihilation in the $\bar pd$ system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 74-94
%V 118
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a5/
%G ru
%F TMF_1999_118_1_a5
Yu. A. Kuperin; S. B. Levin. Extension theory approach to scattering and annihilation in the $\bar pd$ system. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 74-94. http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a5/

[1] L. D. Faddeev, ZhETF, 39:5 (1960), 1459 | MR

[2] L. D. Faddeev, Tr. MIAN SSSR, 69, 1963, 1 | MR | Zbl

[3] O. A. Yakubovskii, YaF, 5:6 (1967), 1312

[4] A. M. Veselova, TMF, 3 (1970), 326

[5] A. M. Veselova, TMF, 35 (1978), 180

[6] S. P. Merkurev, YaF, 24 (1976), 289

[7] S. P. Merkurev, TMF, 38 (1979), 201 | MR

[8] H. Feshbach, Ann. Phys. (N. Y.), 5 (1958), 357 ; 19 (1962), 287 | DOI | MR | Zbl | DOI | MR | Zbl

[9] A. Lein, R. Tomas, Teoriya yadernykh reaktsii pri nizkikh energiyakh, IL, M., 1960

[10] K. Vildermut, Ya. Tan, Edinaya teoriya yadra, Mir, M., 1980 | MR

[11] V. E. Kuzmichev, Nucl. Phys. A, 430 (1984), 636 | DOI

[12] M. Orlowski, Nucl. Phys. A, 440 (1985), 493 | DOI

[13] E. W. Schmid, The Problem of Using Energy-Dependent Nucleon-Nucleon Potentials in Nuclear Physics, Universität Tübingen, Tübingen, 1986

[14] F. Lenz, J. T. Londergan, E. J. Moniz, R. Rozenfelder, M. Stigl, K. Yazaki, Ann. Phys. (N. Y.), 170 (1986), 65 | DOI

[15] W. Glöckle, $R$-matrix Approach to the Three-Body Problem, Preprint RUB-TP 11/85, Ruhr University, Bochum, 1974

[16] R. F. Dashen, J. B. Healy, I. J. Muzinich, Ann. Phys. (N. Y.), 102 (1976), 1 | DOI | MR

[17] I. L. Grach, Yu. S. Kalashnikova, I. M. Narodetskii, M. Zh. Shmatikov, YaF, 42:1 (1985), 241

[18] E. L. Lomon, Nucl. Phys. A, 434 (1985), 139 | DOI

[19] A. N. Safronov, YaF, 38:6 (1983), 1515

[20] B. S. Pavlov, UMN, 42:6 (1987), 99 | MR

[21] Yu. A. Kuperin, K. A. Makarov, B. S. Pavlov, TMF, 63 (1985), 78 | MR

[22] Yu. A. Kuperin, K. A. Makarov, B. S. Pavlov, TMF, 69 (1986), 100 | MR

[23] Yu. A. Kuperin, K. A. Makarov, Yu. B. Melnikov, TMF, 74 (1988), 103

[24] Yu. A. Kuperin, K. A. Makarov, S. P. Merkurev, A. K. Motovilov, B. S. Pavlov, TMF, 75 (1988), 431 ; 76, 242 | MR | MR

[25] B. S. Pavlov, Mat. sbornik, 136:2 (1988), 163 | Zbl

[26] Yu. A. Kuperin, “Faddeev Equations for Three Composite Particles”, Applications of Self-Adjoint Extensions in Quantum Physics, Lecture Notes in Phys., 324, eds. P. Exner, P. Šeba, Springer-Verlag, Berlin–Heidelberg–New York, 1989, 117 | DOI | MR

[27] Yu. A. Kuperin, S. P. Merkuriev, Amer. Math. Soc. Transl., 150 (1992), 141 | MR | Zbl

[28] Yu. A. Kuperin, K. A. Makarov, S. P. Merkuriev, K. A. Motovilov, B. S. Pavlov, J. Math. Phys., 31 (1990), 1681 | DOI | MR | Zbl

[29] Yu. A. Kuperin, K. A. Makarov, B. S. Pavlov, J. Math. Phys., 31 (1990), 199 | DOI | MR | Zbl

[30] Yu. A. Kuperin, K. A. Makarov, Yu. B. Melnikov, “A resonating-group model with extended Channel Spaces”, Applications of Self-Adjoint Extensions in Quantum Physics, Lecture Notes in Phys., 324, eds. P. Exner, P. Šeba, Springer-Verlag, Berlin–Heidelberg–New York, 1989, 146 | DOI | MR

[31] Yu. A. Kuperin, A. A. Kvitsinsky, S. P. Merkuriev, E. A. Yarevsky, Nucl. Phys. A, 523 (1991), 614 | DOI

[32] Yu. A. Kuperin, Yu. B. Melnikov, A. K. Motovilov, Nuovo Cimento A, 104 (1991), 299 | DOI

[33] S. I. Vinitskii, Yu. A. Kuperin, A. K. Motovilov, A. A. Suzko, YaF, 55 (1992), 444

[34] Yu. A. Kuperin, K. A. Makarov, B. S. Pavlov, “An exactly solvable model of a crystal with non-point atoms”, Applications of Self-Adjoint Extensions in Quantum Physics, Lecture Notes in Phys., 324, eds. P. Exner, P. Šeba, Springer-Verlag, Berlin–Heidelberg–New-York, 1989, 267 | DOI | MR

[35] Yu. A. Kuperin, B. S. Pavlov, “Three particles in a lattice: a model of interaction and dynamical equations”, Rigorous Results in Quantum Dynamics, eds. J. Dittrich, P. Exner, World Scientific, Singapure, 1991, 152 | MR

[36] S. B. Levin, Metod granichnykh uslovii i energozavisyaschie vzaimodeistviya v zadache rasseyaniya i annigilyatsii dlya $\bar pN$ i $\bar pd$ sistem, Diss. na soiskanie uch. st. kand. fiz.-mat. nauk, Sankt-Peterburgskii gosuniversitet, Sankt-Peterburg, 1998

[37] I. S. Shapiro, Nucl. Phys. A, 478 (1988), 665 | DOI

[38] O. D. Dalkarov, D. Karbonel, K. V. Protasov, YaF, 52:6(12) (1990), 1670

[39] Yu. A. Kuperin, S. B. Levin, Yu. B. Melnikov, E. A. Yarevsky, Few-Body Systems Suppl., 8 (1995), 462

[40] S. B. Levin, E. A. Yarevsky, Hyperfine Interactions, 101 (1996), 511 | DOI

[41] Yu. A. Kuperin, S. B. Levin, Yu. B. Melnikov, E. A. Yarevsky, Computers Math. Applic., 34:5/6 (1997), 559 | DOI | MR | Zbl

[42] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR

[43] S. P. Merkurev, Zap. nauchn. semin. LOMI, 77, 1978, 148 | MR | Zbl