Three-particle Calogero model: Supertraces and ideals on the observables algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 1, pp. 122-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The associative observables superalgebra of the three-particle Calogero model giving all its wave functions via the standard Fock procedure has two independent supertraces. When the coupling constant $\nu$ is $n\pm1/3$ or $n+1/2$, the existence of two independent supertraces leads to the existence of a nontrivial two-sided ideal in the observables superalgebra for any integer $n$.
@article{TMF_1998_116_1_a4,
     author = {S. E. Konstein},
     title = {Three-particle {Calogero} model: {Supertraces} and ideals on the observables algebra},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {122--133},
     year = {1998},
     volume = {116},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_116_1_a4/}
}
TY  - JOUR
AU  - S. E. Konstein
TI  - Three-particle Calogero model: Supertraces and ideals on the observables algebra
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 122
EP  - 133
VL  - 116
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_116_1_a4/
LA  - ru
ID  - TMF_1998_116_1_a4
ER  - 
%0 Journal Article
%A S. E. Konstein
%T Three-particle Calogero model: Supertraces and ideals on the observables algebra
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 122-133
%V 116
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1998_116_1_a4/
%G ru
%F TMF_1998_116_1_a4
S. E. Konstein. Three-particle Calogero model: Supertraces and ideals on the observables algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 1, pp. 122-133. http://geodesic.mathdoc.fr/item/TMF_1998_116_1_a4/

[1] F. Calogero, J. Math. Phys., 10 (1969), 2191 ; 2197 ; 12 (1971), 419 | DOI | MR | DOI | MR

[2] M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 94 (1983), 313 | DOI | MR

[3] A. Polychronakos, Phys. Rev. Lett., 69 (1992), 703 | DOI | MR | Zbl

[4] L. Brink, H. Hansson, M. A. Vasiliev, Phys. Lett. B, 286 (1992), 109 | DOI | MR

[5] C. F. Dunkl, Trans. Am. Math. Soc., 311 (1989), 167 | DOI | MR | Zbl

[6] L. Brink, H. Hansson, S. E. Konstein, M. A. Vasiliev, Nucl. Phys. B, 401 (1993), 591 | DOI | MR | Zbl

[7] A. M. Perelomov, TMF, 6 (1971), 364 | MR

[8] M. A. Vasilev, O. V. Dodlov, S. E. Konshtein, Pisma v ZhETF, 58 (1993), 911

[9] S. E. Konstein, M. A. Vasiliev, J. Math. Phys., 37 (1996), 2872 | DOI | MR | Zbl

[10] M. A. Vasilev, Pisma v ZhETF, 50:8 (1989), 344 ; M. A. Vasiliev, Int. J Mod. Phys. A, 6 (1991), 1115 | MR | DOI | MR | Zbl