Quantum Volterra model and universal $R$-matrix
Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 3, pp. 384-396 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we explicitly prove that an integrable system solved by the quantum inverse scattering method can be described by a pure algebraic object (universal $R$-matrix) and a proper algebraic representation. For the example of the quantum Volterra model, we construct the $L$-operator and the fundamental $R$-matrix from the universal $R$-matrix for the quantum affine $U_q(\widehat{sl}_2)$ algebra and $q$-oscillator representation for it. In this way, there is an equivalence between the integrable system with the symmetry algebra $\mathcal A$ and the representation of this algebra.
@article{TMF_1997_113_3_a2,
     author = {A. V. Antonov},
     title = {Quantum {Volterra} model and universal $R$-matrix},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {384--396},
     year = {1997},
     volume = {113},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_113_3_a2/}
}
TY  - JOUR
AU  - A. V. Antonov
TI  - Quantum Volterra model and universal $R$-matrix
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 384
EP  - 396
VL  - 113
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_113_3_a2/
LA  - ru
ID  - TMF_1997_113_3_a2
ER  - 
%0 Journal Article
%A A. V. Antonov
%T Quantum Volterra model and universal $R$-matrix
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 384-396
%V 113
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1997_113_3_a2/
%G ru
%F TMF_1997_113_3_a2
A. V. Antonov. Quantum Volterra model and universal $R$-matrix. Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 3, pp. 384-396. http://geodesic.mathdoc.fr/item/TMF_1997_113_3_a2/

[1] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[2] L. D. Faddeev, L. A. Takhtajan, Springer Lecture Notes in Physics, 246, 1986, 166 | DOI | MR

[3] A. Volkov, Phys. Lett. A, 167 (1992), 345 | DOI | MR

[4] O. Babelon, Phys. Lett. B, 238 (1990), 234 | DOI | MR | Zbl

[5] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, TMF, 40 (1979), 194 | MR

[6] S. Khoroshkin, A. Stolin, V. Tolstoy, Mod. Phys. Lett. A, 10:19 (1995), 1375 | DOI | MR | Zbl

[7] L. Faddeev, Int. J. Mod. Phys. A, 10:13 (1995), 1845 | DOI | MR | Zbl

[8] R. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982 | MR | Zbl

[9] V. Bazhanov, S. Lukyanov, A. Zamolodchikov, Integrable Structure of Conformal Field Theory. II: $Q$-operator and DDV equation, E-print hep-th/9604044 | MR

[10] E. Damaskinsky, P. Kulish, Irreducible representations of deformed oscillator algebra and $q$-special functions, E-print q-alg/9610002 | MR

[11] A. Antonov, B. Feigin, Phys. Lett. B, 392 (1997), 115 | DOI | MR

[12] V. O. Tarasov, L. A. Takhtadzhyan, L. D. Faddeev, TMF, 57 (1983), 163 | MR

[13] V. Fateev, A. B. Zamolodchikov, Phys. Lett. A, 92 (1982), 37 | DOI | MR

[14] L. D. Faddeev, A. Volkov, Phys. Lett. B, 315 (1993), 311 | DOI | MR | Zbl

[15] A. Izergin, V. Korepin, Lett. Math. Phys., 5 (1981), 199 | DOI | MR