Quantum Volterra model and universal $R$-matrix
Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 3, pp. 384-396
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we explicitly prove that an integrable system solved by the quantum inverse scattering method can be described by a pure algebraic object (universal $R$-matrix) and a proper algebraic representation. For the example of the quantum Volterra model, we construct the $L$-operator and the fundamental $R$-matrix from the universal $R$-matrix for the quantum affine $U_q(\widehat{sl}_2)$ algebra and $q$-oscillator representation for it. In this way, there is an equivalence between the integrable system with the symmetry algebra $\mathcal A$ and the representation of this algebra.
@article{TMF_1997_113_3_a2,
author = {A. V. Antonov},
title = {Quantum {Volterra} model and universal $R$-matrix},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {384--396},
publisher = {mathdoc},
volume = {113},
number = {3},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1997_113_3_a2/}
}
A. V. Antonov. Quantum Volterra model and universal $R$-matrix. Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 3, pp. 384-396. http://geodesic.mathdoc.fr/item/TMF_1997_113_3_a2/