On the correspondence of hypercomplex solutions to special unitary groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 1, pp. 29-33
Voir la notice de l'article provenant de la source Math-Net.Ru
In the example of the nonlinear Klein–Gordon equation, we demonstrate that the even-indexed, hypergeometric solutions admit matrix representation that can be associated with special unitary groups. For the index 2, in particular, this correspondence is shown to be $1:1$. For the odd index 3, we show that no anticommuting matrices exist in the class of unitary anti-Hermitian matrices. We also show that in the electron-proton transport problem, the solution obtained describes the passage of the particles through the potential barrier.
@article{TMF_1997_113_1_a2,
author = {V. V. Gudkov},
title = {On the correspondence of hypercomplex solutions to special unitary groups},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {29--33},
publisher = {mathdoc},
volume = {113},
number = {1},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1997_113_1_a2/}
}
V. V. Gudkov. On the correspondence of hypercomplex solutions to special unitary groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 1, pp. 29-33. http://geodesic.mathdoc.fr/item/TMF_1997_113_1_a2/