On the correspondence of hypercomplex solutions to special unitary groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 1, pp. 29-33
Cet article a éte moissonné depuis la source Math-Net.Ru
In the example of the nonlinear Klein–Gordon equation, we demonstrate that the even-indexed, hypergeometric solutions admit matrix representation that can be associated with special unitary groups. For the index 2, in particular, this correspondence is shown to be $1:1$. For the odd index 3, we show that no anticommuting matrices exist in the class of unitary anti-Hermitian matrices. We also show that in the electron-proton transport problem, the solution obtained describes the passage of the particles through the potential barrier.
@article{TMF_1997_113_1_a2,
author = {V. V. Gudkov},
title = {On the correspondence of hypercomplex solutions to special unitary groups},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {29--33},
year = {1997},
volume = {113},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1997_113_1_a2/}
}
V. V. Gudkov. On the correspondence of hypercomplex solutions to special unitary groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 1, pp. 29-33. http://geodesic.mathdoc.fr/item/TMF_1997_113_1_a2/
[1] V. V. Gudkov, Doklady RAN, 353:4 (1997), 439–441 | MR | Zbl
[2] V. V. Gudkov, ZhVM i MF, 37:5 (1997), 599–604 | MR | Zbl
[3] E. Madelung, Matematicheskii apparat fiziki, Fizmatgiz, M., 1960
[4] P. Ramon, Teoriya polya. Sovremennyi vvodnyi kurs, Mir, M., 1984 | MR
[5] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984 | MR
[6] B. Shutts, Geometricheskie metody matematicheskoi fiziki, Mir, M., 1984
[7] A. S. Davydov, Biologiya i kvantovaya mekhanika, Naukova dumka, Kiev, 1979 | MR
[8] A. S. Davydov, Solitony v bioenergetike, Naukova dumka, Kiev, 1986 | MR