Electron-phonon interaction of strong correlated systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 3, pp. 439-451
Cet article a éte moissonné depuis la source Math-Net.Ru
The Hubbard–Holstein model after Canonical Lang–Firsov transformation is investigated. Two peculiarities of the model are taken into account: the strong electron correlations and the fact that the hopping of polarons between lattice sites are accompanied by an unrestricted number of phonons. A new diagram technique based on the classification of irreducible multi-particle Green functions is developed. A theorem about the Connected Vacuum diagrams is established and the Dyson equation for the electron Green functions is obtained.
@article{TMF_1997_111_3_a9,
author = {V. A. Moskalenko},
title = {Electron-phonon interaction of strong correlated systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {439--451},
year = {1997},
volume = {111},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1997_111_3_a9/}
}
V. A. Moskalenko. Electron-phonon interaction of strong correlated systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 3, pp. 439-451. http://geodesic.mathdoc.fr/item/TMF_1997_111_3_a9/
[1] M. I. Vladimir, V. A. Moskalenko, TMF, 82 (1990), 428
[2] S. M. Vakaru, M. I. Vladimir, V. A. Moskalenko, TMF, 85 (1990), 248
[3] V. A. Moskalenko, Wang Xi-Fu, Wang Zhi-Xing, Yi Xue-Xi, TMF, 103 (1995), 138
[4] J. Hubbard, J. Proc. R. Soc. A, 276 (1963), 233
[5] T. Holstein, Ann. Phys., 8:3 (1959), 325 | DOI | Zbl
[6] I. G. Lang, Yu. A. Firsov, ZhETF, 43 (1962), 1843 | Zbl
[7] R. Kubo, J. Phys. Soc. Japan, 17:7 (1962), 1100 | DOI | MR | Zbl