Quantum dissipative systems. IV. Analog of Lie algebra and Lie group
Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 214-227 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The requirement of consistent quantum description of dissipative systems leads to necessity to go beyond Lie algebra and group. In order to describe dissipative (non-Hamiltonian) systems in quantum theory we need to use non-Lie algebra (algebras for which the Jacoby identity is not satisfied) and analytic quasigroups (nonassociative generalization of analytic groups). We prove that this analog is a commutant Lie algebra (an algebra, the commutant of which is a Lie subalgebra) and a commutant associative loop (a loop, commutators of which form an associative subloop (group)). We prove that the tangent algebra of an analytic commutant associative loop (Valya loop) is a commutant Lie algebra (Valya algebra). Examples of commutant Lie algebras are considered.
@article{TMF_1997_110_2_a1,
     author = {V. E. Tarasov},
     title = {Quantum dissipative systems. {IV.~Analog} of {Lie} algebra and {Lie} group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {214--227},
     year = {1997},
     volume = {110},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a1/}
}
TY  - JOUR
AU  - V. E. Tarasov
TI  - Quantum dissipative systems. IV. Analog of Lie algebra and Lie group
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 214
EP  - 227
VL  - 110
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a1/
LA  - ru
ID  - TMF_1997_110_2_a1
ER  - 
%0 Journal Article
%A V. E. Tarasov
%T Quantum dissipative systems. IV. Analog of Lie algebra and Lie group
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 214-227
%V 110
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a1/
%G ru
%F TMF_1997_110_2_a1
V. E. Tarasov. Quantum dissipative systems. IV. Analog of Lie algebra and Lie group. Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 214-227. http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a1/

[1] L. S. Pontryagin, Nepreryvnye gruppy, 3-e izd., Nauka, M., 1973 | MR | Zbl

[2] L. A. Skornyakov (red.), Obschaya algebra, T. 1, Nauka, M., 1990 | MR

[3] V. E. Tarasov, TMF, 110:1 (1997), 73–85 | DOI | MR | Zbl

[4] V. D. Belousov, Osnovy teorii kvazigrupp i lup, Nauka, M., 1967 | MR

[5] A. I. Maltsev, Mat. sb., 36:3 (1995), 569–573 ; Избранные труды. Т. 1. Классическая алгебра, Наука, М., 1976, С. 340–345 | MR | MR

[6] K. A. Zhevalkov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR

[7] R. D. Shafer, An introduction to nonassociative algebras, Academic Press, London–New York, 1966 | MR | Zbl

[8] V. E. Tarasov, TMF, 100:3 (1994), 402–417 | MR | Zbl

[9] K. Godbiion, Differentsialnaya geometriya i analiticheskaya mekhanika, Mir, M., 1973

[10] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl

[11] R. Kuk, Beskonechnye matritsy i prostranstva posledovatelnostei, Nauka, M., 1960