Therm splitting in quantum mechanical double center problem for Dirac equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 2, pp. 232-249

Voir la notice de l'article provenant de la source Math-Net.Ru

An asimptotic (by large internuclear distance) theory of the quantum mechanical double center problem for the Dirac equation is presented. An asymptotic behaviour of the double center wave function of the Dirac electron for the system: an arbitrary ion plus atom is constructed. By using this function the leading term of the therm splitting asymptotics in the relativistic double center problem is found.
@article{TMF_1996_109_2_a5,
     author = {P. P. Gorvat and V. Yu. Lazur and S. I. Migalina and I. M. Shuba and R. K. Janev},
     title = {Therm splitting in quantum mechanical double center problem for {Dirac} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {232--249},
     publisher = {mathdoc},
     volume = {109},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_109_2_a5/}
}
TY  - JOUR
AU  - P. P. Gorvat
AU  - V. Yu. Lazur
AU  - S. I. Migalina
AU  - I. M. Shuba
AU  - R. K. Janev
TI  - Therm splitting in quantum mechanical double center problem for Dirac equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 232
EP  - 249
VL  - 109
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_109_2_a5/
LA  - ru
ID  - TMF_1996_109_2_a5
ER  - 
%0 Journal Article
%A P. P. Gorvat
%A V. Yu. Lazur
%A S. I. Migalina
%A I. M. Shuba
%A R. K. Janev
%T Therm splitting in quantum mechanical double center problem for Dirac equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 232-249
%V 109
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1996_109_2_a5/
%G ru
%F TMF_1996_109_2_a5
P. P. Gorvat; V. Yu. Lazur; S. I. Migalina; I. M. Shuba; R. K. Janev. Therm splitting in quantum mechanical double center problem for Dirac equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 2, pp. 232-249. http://geodesic.mathdoc.fr/item/TMF_1996_109_2_a5/