Solution of spectral problem for Schrödinger equation with degenerate polinomial potential of even power
Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 1, pp. 107-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The symmetry of the stationary Schrödinger equation with a degenerate potential $U(x)=x^{2r}$, $r \in Z_+$, describing phase transitions in quantum systems, is reveled. The analytical procedure of finding the eigenvalues of the potentials in question is constructed and realized numerically for $r=2,3,\dots,18$. The low energy levels are found.
@article{TMF_1996_109_1_a9,
     author = {V. N. Sorokin and A. S. Vshivtsev and N. V. Norin},
     title = {Solution of spectral problem for {Schr\"odinger} equation with degenerate polinomial potential of even power},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {107--123},
     year = {1996},
     volume = {109},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_109_1_a9/}
}
TY  - JOUR
AU  - V. N. Sorokin
AU  - A. S. Vshivtsev
AU  - N. V. Norin
TI  - Solution of spectral problem for Schrödinger equation with degenerate polinomial potential of even power
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 107
EP  - 123
VL  - 109
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_109_1_a9/
LA  - ru
ID  - TMF_1996_109_1_a9
ER  - 
%0 Journal Article
%A V. N. Sorokin
%A A. S. Vshivtsev
%A N. V. Norin
%T Solution of spectral problem for Schrödinger equation with degenerate polinomial potential of even power
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 107-123
%V 109
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1996_109_1_a9/
%G ru
%F TMF_1996_109_1_a9
V. N. Sorokin; A. S. Vshivtsev; N. V. Norin. Solution of spectral problem for Schrödinger equation with degenerate polinomial potential of even power. Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 1, pp. 107-123. http://geodesic.mathdoc.fr/item/TMF_1996_109_1_a9/

[1] E. Schrödinger, Ann. Phys., 79 (1926), 361 ; 489 | DOI | Zbl | Zbl

[2] V. A. Fok, Nachala kvantovoi mekhaniki, Nauka, M., 1976 | MR

[3] V. G. Bagrov, A. S. Vshivtsev, S. V. Ketov, Dopolnitelnye glavy matematicheskoi fiziki (kalibrovochnye polya), Izd-vo MIREA, M., 1990; В. Г. Багров, А. С. Вшивцев, Простейшие применения алгебр симметрии к решению задач квантовой механики, Препринт No 31, Томский филиал СО АН СССР, Томск, 1986

[4] O. B. Zaslavskii, V. V. Ulyanov, ZhETF, 87:5 (1984), 1724–1733 | MR

[5] M. A. Shifman, A. V. Turbiner, Quantal problems with partial algebraization of the spectrum, Preprint ITEP–174, Atominform, Moscow, 1988 | MR

[6] A. Yu Morozov, A. M. Perelomov, A. A. Rosly, M. A. Shifman, A. V. Turbiner, Quasi-exactlysolvable quantal problems: one-dimensional analoque of rational conformal field theories, Preprint MIT.CPT No 1741, 1989 ; A. V. Turbiner, Contemporary Math., 160, 1990, 263–310 | MR | DOI | MR

[7] A. G. Ushveridze, EChAYa, 20:5 (1989), 1185–1245 | MR

[8] A. S. Vshivtsev, V. Ch. Zhukovskii, R. A. Potapov, A. O. Starinets, Izv. Vuzov. Fizika, 2 (1993), 76–88

[9] V. N. Sorokin, “Obobschenie klassicheskikh ortogonalnykh mnogochlenov i skhodimost sovmestnykh approksimatsii Pade”, Tr. seminara im. I. G. Petrovskogo, 11, MGU, M., 1986, 125–165

[10] A. S. Vshivtsev, V. N. Sorokin, Izv. Vuzov. Fizika, 1 (1994), 95–101 | MR | Zbl

[11] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR

[12] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[13] V. E. Zakharov, S. V. Manakov, S. P. Novikov, P. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[14] V. P. Maslov, Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988 | MR

[15] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 | MR | Zbl

[16] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh ODU, Nauka, M., 1983 | MR | Zbl

[17] V. G. Bagrov, D. M. Gitman, I. M. Ternov, V. R. Khalilov, V. N. Shapovalov, Tochnye resheniya relyativistskikh volnovykh uravnenii, Nauka, Novosibirsk, 1982

[18] V. G. Bagrov, D. M. Gitman, Exact Solutions of Relativisic Wave Equations, Kluwer Academic Publishers, Dordrecht–Boston–London, 1990 | MR | Zbl

[19] R. Gilmor, Prikladnaya teoriya katastrof, Mir, M., 1984 | MR | Zbl

[20] T. Poston, I. Styuart, Teoriya katastrof i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[21] V. I. Arnold, Teoriya katastrof, MGU, M., 1983 | MR

[22] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 5. Statisticheskaya fizika, Nauka, M., 1964 | MR | Zbl

[23] G. Stenli, Fazovye perekhody i kriticheskie yavleniya, Mir, M., 1973

[24] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR

[25] A. Hautot, A. Magnus, J. Comp. Appl. Math., 5:1 (1979), 3–15 | DOI | MR | Zbl

[26] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 3. Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1989 | MR