On quantum description of motion with friction
Teoretičeskaâ i matematičeskaâ fizika, Tome 106 (1996) no. 2, pp. 300-305
Cet article a éte moissonné depuis la source Math-Net.Ru
AЁmethod of quantum description of motion in a dissipative system is considered. One-dimensional problem is described by a nonlinear integro-differential generalization of the Schrödinger equation. The case of free motion with friction is solved exactly. The problem with the infinite-wall potential is considered and an approximate solution is obtained. The solution provides an example of a system with friction with time dependent parameters, expired from the moment of its production. This effect can be tentatively applied for an interpretation of experimental indications on a time dependence of hadron effective cross-sections.
@article{TMF_1996_106_2_a9,
author = {B. A. Arbuzov},
title = {On quantum description of motion with friction},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {300--305},
year = {1996},
volume = {106},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1996_106_2_a9/}
}
B. A. Arbuzov. On quantum description of motion with friction. Teoretičeskaâ i matematičeskaâ fizika, Tome 106 (1996) no. 2, pp. 300-305. http://geodesic.mathdoc.fr/item/TMF_1996_106_2_a9/
[1] Kan K. K., Griffin J. J., Phys. Lett., 50B (1974), 241 | DOI
[2] Hasse R. W., Journ. Math. Phys., 16 (1975), 2005 | DOI
[3] Albrecht K., Phys. Lett., 56B (1975), 127 | DOI
[4] Tarasov V. E., TMF, 100 (1994), 402 | Zbl
[5] Alexander G., Johnston R. H. W., O'Ceallaigh C., Nouvo Cimento, 6 (1957), 478 | DOI
[6] Brandt R. et al., Phys. Rev., C45 (1992), 1194
[7] Arisawa T., Fujimoto Y., Hasegawa S. et al., Nucl. Phys., B424 (1994), 241 | DOI