On the search for nonvacuum, nonself-dual solutions of Yang-Mills equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 3, pp. 423-428
Cet article a éte moissonné depuis la source Math-Net.Ru
A system of two equations for two scalar functions is derived on the basis of the generalization of the self-duality equations in pseudo-Euclidean space. The possibility of existence of solutions to the Yang–Mills equations that are nonvacuum, nonself-dual, real-valued, possess a finite action, and are time-dependent is discussed.
@article{TMF_1995_105_3_a7,
author = {A. L. Koshkarov},
title = {On the search for nonvacuum, nonself-dual solutions of {Yang-Mills} equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {423--428},
year = {1995},
volume = {105},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a7/}
}
A. L. Koshkarov. On the search for nonvacuum, nonself-dual solutions of Yang-Mills equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 3, pp. 423-428. http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a7/
[1] Polyakov A., Pisma v ZhETF, 20 (1974), 430; Hooft G., Nucl. Phys., B79 (1974), 276 ; Belavin A., Polyakov A., Schwarz A., Tyupkin Y., Phys. Lett., B59 (1975), 85 | DOI | MR | DOI | MR
[2] Vainshtein A., Zakharov V., Novikov V., Shifman M., UFN, 136 (1982), 553 | DOI | MR
[3] Manton N., Phys. Rev., D28 (1983), 2019 ; Ringwald A., Preprint CERN-TH.6135 / 91 | MR
[4] Coleman S., Comm. Math. Phys., 55 (1977), 113 | DOI | MR | Zbl
[5] Yatsun V., Lett. Math. Phys., 11 (1986), 153 | DOI | MR | Zbl
[6] Konopleva N., Popov V., Kalibrovochnye polya, Atomiedat, M., 1980 | MR