Riccati pseudopotential of AKNS two-family NLPDEs by Painlevé analysis
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 478-486 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Finding the Bäcklund transformation from the singularity structure only is impossible with the method of Weiss if the PDE has two families of singularities with opposite principal parts, such as the modified KdV and sine-Gordon equations. For such PDEs, we first consider the truncation with one manifold, derive the Darboux transformation (DT) and show that it involves the two entire functions associated to each family. Their ratio is then assumed to satisfy the most general Riccati system. This hypothesis combined with the DT generates a very small number of determining equations, admitting a unique solution, equivalent to the matricial Lax pair by the usual linearization of the Riccati system.
@article{TMF_1994_99_3_a16,
     author = {M. Musette and R. Conte},
     title = {Riccati pseudopotential of {AKNS} two-family {NLPDEs} by {Painlev\'e} analysis},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {478--486},
     year = {1994},
     volume = {99},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a16/}
}
TY  - JOUR
AU  - M. Musette
AU  - R. Conte
TI  - Riccati pseudopotential of AKNS two-family NLPDEs by Painlevé analysis
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 478
EP  - 486
VL  - 99
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a16/
LA  - ru
ID  - TMF_1994_99_3_a16
ER  - 
%0 Journal Article
%A M. Musette
%A R. Conte
%T Riccati pseudopotential of AKNS two-family NLPDEs by Painlevé analysis
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 478-486
%V 99
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a16/
%G ru
%F TMF_1994_99_3_a16
M. Musette; R. Conte. Riccati pseudopotential of AKNS two-family NLPDEs by Painlevé analysis. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 478-486. http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a16/

[1] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, Stud. Appl. Math., 53 (1974), 249–315 | DOI | MR | Zbl

[2] A. V. Bäcklund, Lunds Universitets Arsskrift Avd., 19:2 (1883)

[3] L. J. F. Broer, Appl. Sci. Res., 31 (1975), 377–395 | DOI | MR | Zbl

[4] R. Conte, Phys. Lett. A, 140 (1989), 383–390 | DOI | MR

[5] M. M. Crum, Quart. J. Math. Oxford, 6 (1955), 121–127 | DOI | MR

[6] G. Darboux, C. R. Acad. Sc. Paris, 94 (1882), 1456–1459

[7] G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, vol. III, Gauthier-Villars, Paris, 1894 | MR | Zbl

[8] P. G. Estévez, P. R. Gordoa, L. M. Alonso, E. M. Reus, J. Phys. A, 26 (1993), 1915–1925 | DOI | MR | Zbl

[9] A. P. Fordy, J. Gibbons, J. Math. Phys., 22 (1981), 1170–1175 | DOI | MR | Zbl

[10] R. Hirota, J. Satsuma, Prog. Theor. Phys., 57 (1977), 797–807 | DOI | MR | Zbl

[11] D. J. Kaup, Prog. Theor. Phys., 54 (1975), 72–78 | DOI | MR | Zbl

[12] G. L. Lamb Jr, Phys. Lett. A, 25 (1967), 181–182 | DOI

[13] G. L. Lamb Jr, J. Math. Phys., 15 (1974), 2157–2165 | DOI | MR

[14] P. D. Lax, Comm. Pure Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl

[15] D. Levi, O. Ragnisco, A. Sym, II Nuovo Cimento B, 83 (1984), 34–41 | DOI | MR

[16] V. B. Matveev, M. A. Salle, Darboux transformations and solitons, Springer-Verlag, Berlin, 1991 | MR | Zbl

[17] M. Musette, RCP 264 meeting. Montpellier, unpublished

[18] M. Musette, R. Conte, preprint SPEC 93/095 | MR

[19] P. Painlevé, Acta Math., 25 (1902), 1–85 | DOI | MR

[20] A. Pickering, J. Phys. A, 26 (1993), 4395–4405 | DOI | MR | Zbl

[21] C. Rogers, W. F. Shadwick, Bäcklund transformations and their applications, Academic press, New York, 1982 | MR

[22] M. Wadati, H. Sanuki, K. Konno, Prog. Theor. Phys., 53 (1975), 419–436 | DOI | MR | Zbl

[23] J. Weiss, J. Math. Phys., 24 (1983), 1405–1413 | DOI | MR | Zbl

[24] J. Weiss, J. Math. Phys., 25 (1984), 2226–2235 | DOI | MR | Zbl

[25] J. Weiss, M. Tabor, G. Carnevale, J. Math. Phys., 24 (1983), 522–526 | DOI | MR | Zbl

[26] V. E. Zakharov, A. B. Shabat, Zh. Eksp. Teor. Fiz., 61 (1971), 118–134 | MR