Integrable and nonintegrable cases of the Lax equations with a source
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 471-477
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Korteweg–de Vries equation with a source given as a Fourier integral over eigenfunctions of the so-called generating operator is considered. It is shown that depending on the choice of a basis of eigenfunctions we have the following three possibilities: 1) evolution equations for the scattering data are nonintegrable; 2) evolution equations for the scattering data are integrable but the solution of the Cauchy problem for the Korteweg–de Vries equation with a source at some $t'>t_0$ leaves the considered class of functions decreasing rapidly enough as $x\to \pm \infty$; 3) evolution equations for the scattering data are integrable and the solution of the Cauchy problem for the Korteweg–de Vries equation with a source exists at all $t>t_0$. All these possibilities are widespread and occur in other Lax equations with a source.
			
            
            
            
          
        
      @article{TMF_1994_99_3_a15,
     author = {V. K. Mel'nikov},
     title = {Integrable and nonintegrable cases of the {Lax} equations with a source},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {471--477},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a15/}
}
                      
                      
                    V. K. Mel'nikov. Integrable and nonintegrable cases of the Lax equations with a source. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 471-477. http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a15/
