The generalized Zakharov–Shabat system and the soliton perturbations
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 292-299 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nonlinear evolution equations and their inhomogeneous versions related through the inverse scattering method to the generalized Zakharov–Shabat system $L=i d/dx + q(x) -\lambda J$ are studied. Here we assume that the potential $q(x)=[J,Q(x)]$ takes values in the simple Lie algebra $\mathfrak {g}$ and that $J$ is a nonregular element of the Cartan subalgebra $\mathfrak {h}$. The corresponding systems of equations for the scattering data of $L$ are derived. These can be applied to the study of soliton perturbations of such equations as the matrix nonlinear Schrödinger equation, the matrix $n$–wave equations etc.
@article{TMF_1994_99_2_a15,
     author = {V. S. Gerdjikov},
     title = {The generalized {Zakharov{\textendash}Shabat} system and the soliton perturbations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {292--299},
     year = {1994},
     volume = {99},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a15/}
}
TY  - JOUR
AU  - V. S. Gerdjikov
TI  - The generalized Zakharov–Shabat system and the soliton perturbations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 292
EP  - 299
VL  - 99
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a15/
LA  - en
ID  - TMF_1994_99_2_a15
ER  - 
%0 Journal Article
%A V. S. Gerdjikov
%T The generalized Zakharov–Shabat system and the soliton perturbations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 292-299
%V 99
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a15/
%G en
%F TMF_1994_99_2_a15
V. S. Gerdjikov. The generalized Zakharov–Shabat system and the soliton perturbations. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 292-299. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a15/

[1] Ablowitz M., H. Seegur, Solitons and the Inverse Scattering Transform. SIAM Studies in Applied Mathematics, SIAM, Philadelphia, 1981 | MR | Zbl

[2] Beals R., D. Sattinger, Commun. Math. Phys., 138 (1991), 409 | DOI | MR | Zbl

[3] N. Bourbaki, Lie groups and Lie algebras, Addison–Wesley Pub. Co., Reading Mass., 1975 | Zbl

[4] Calogero F., A. Degasperis, Spectral Transform and Solitons. Studies in Mathematics and its Applications, North Holland, Amsterdam, 1982 | MR | Zbl

[5] Calogero F., A. Degasperis, Solitons, eds. R. K. Bullough, P. J. Caudrey, Springer-Verlag, Berlin, 1980 | MR

[6] Calogero F., Xiaodin, J. Math. Phys., 32 (1991), 875, 2703 | DOI | MR

[7] Faddeev L. D., L. A. Takhtadjan, Hamiltonian Method in the Theory of Solitons, Springer-Verlag, Berlin, 1986 | MR

[8] Fokas A., M. Ablowitz., Stud. Appl. Math., 80 (1989), 253 | DOI | MR | Zbl

[9] Fordy A. P., P. P. Kulish, Commun. Math. Phys., 89 (1983), 427 | DOI | MR | Zbl

[10] Gerdjikov V. S., Lett. Math. Phys., 6 (1982), 315 | DOI | MR | Zbl

[11] Gerdjikov V. S., Inverse Problems, 2 (1986), 51 | DOI | MR | Zbl

[12] Gerdjikov V. S., Phys. Lett. A, 126 (1987), 184 | DOI | MR

[13] Gerdjikov V. S., TMF, 92 (1992), 374 ; Lax Representation Does not Mean Complete Integrability, Internal Report of ICTP IC/91/274, 1991 | MR | Zbl

[14] Gerdjikov V. S., E. Kh. Khristov, Bulgarian J. Phys., 7 (1980), 28,119 | MR

[15] Gerdjikov V. S., M. I. Ivanov, Inverse Problems, 8 (1992), 831 | DOI | MR | Zbl

[16] Gerdjikov V. S., A. B. Yanovski, Phys. Lett. A, 103 (1984), 232 | DOI | MR

[17] Gerdjikov V. S., A. B. Yanovski, Commun. Math. Phys., 103 (1986), 549 | DOI | MR | Zbl

[18] Harnad J., Y. Saint-Auben, S. Schneider, Commun. Math. Phys., 89 (1984), 329 | DOI | MR

[19] Kaup D. J., A. Reiman, A. Bers, Rev. Mod. Phys., 51 (1979), 275 | DOI | MR

[20] Malomed B., Phys Rev. A, 43 (1991), 410, 3114 | DOI | MR

[21] Zakharov V. E., S. V. Manakov, ZhETP, 69 (1975), 1654 | MR

[22] Zakharov V. E., S. V. Manakov, S. P. Novikov, L. I. Pitaevskii, Soliton Theory. The Inverse Problem Method, Nauka, Moscow, 1980 | MR