Space curve evolution, geometric phase and solitons
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 172-176

Voir la notice de l'article provenant de la source Math-Net.Ru

Certain moving space curves are endowed with a geometric phase. This phase arises due to the path dependence of the rotation of an orthonormal triad (frame) defined at every point on the curve. In the present work we use the connection between moving curves and soliton dynamics to find the geometric phase associated with a class of soliton-supporting equations.
@article{TMF_1994_99_2_a1,
     author = {Radha Balakrishnan},
     title = {Space curve evolution, geometric phase and solitons},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {172--176},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a1/}
}
TY  - JOUR
AU  - Radha Balakrishnan
TI  - Space curve evolution, geometric phase and solitons
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 172
EP  - 176
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a1/
LA  - en
ID  - TMF_1994_99_2_a1
ER  - 
%0 Journal Article
%A Radha Balakrishnan
%T Space curve evolution, geometric phase and solitons
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 172-176
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a1/
%G en
%F TMF_1994_99_2_a1
Radha Balakrishnan. Space curve evolution, geometric phase and solitons. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 172-176. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a1/