Spatially distributed classical Lagrangian mechanics
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 3, pp. 369-373
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is well known that the existence of two nontrivial integrals of the motion makes it possible to parametrize the motion of a Lagrangian rigid body by two variables. On the basis of this fact it is shown that certain combinations of the quantities that characterize the trajectory of such a body satisfy well-known nonlinear equations: sine–Gordon, Korteweg–de Vries, 
Klein–Gordon, and nonlinear Schrödinger equation.
			
            
            
            
          
        
      @article{TMF_1994_101_3_a4,
     author = {E. I. Bogdanov},
     title = {Spatially distributed classical {Lagrangian} mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {369--373},
     publisher = {mathdoc},
     volume = {101},
     number = {3},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a4/}
}
                      
                      
                    E. I. Bogdanov. Spatially distributed classical Lagrangian mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 3, pp. 369-373. http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a4/
