@article{TMF_1994_101_3_a4,
author = {E. I. Bogdanov},
title = {Spatially distributed classical {Lagrangian} mechanics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {369--373},
year = {1994},
volume = {101},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a4/}
}
E. I. Bogdanov. Spatially distributed classical Lagrangian mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 3, pp. 369-373. http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a4/
[1] Bogoyavlenskii O. I., UMN, 47:1 (1992), 107–146 | MR
[2] Baryakhtar V. G., Belokolos E. D., Golod P. I., Preprint ITF-84-128, Kiev, 1984
[3] Veselov A. P., DAN SSSR, 120:5 (1983), 1094–1097 | MR
[4] Drinfeld V. G., Sokolov V. V., Algebry Li i uravneniya tipa Kortevega–de Friza, Itogi nauki i tekhniki, 24, VINITI, M., 1984, 81–180 | MR
[5] Bogdanov E. I., TMF, 72:2 (1987), 244–254
[6] Bobenko A. I., Funkts. analiz i ego prilozh., 19:1 (1985), 6–19 | MR | Zbl
[7] Dodd P., Eilbek Dzh., Gibbon Dzh., Morris X., Solitony, Mir, M., 1988 | MR
[8] Lem Dzh. L., Vvedenie v teoriyu solitonov, Mir, M., 1983 | MR
[9] Golubev V. V., Lektsii po integrirovaniyu uravnenii dvizheniya tverdogo tela okolo nepodvizhnoi tochki, GIITL, M., 1953 | MR
[10] Bogdanov E. I., TMF, 91:3 (1992), 433–439 | MR
[11] Kirillov A. A., “Geometrcheskoe kvantovanie”, Itogi nauki i tekhniki, 4, VINITI, M., 1985, 141–178 | MR
[12] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | Zbl
[13] Fomenko A. T., Differentsialnaya geometriya i topologiya, MGU, M., 1983
[14] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR
[15] Nyuell A., Solitony v matematike i fizike, Mir, M., 1989 | MR