Spatially distributed classical Lagrangian mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 3, pp. 369-373

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the existence of two nontrivial integrals of the motion makes it possible to parametrize the motion of a Lagrangian rigid body by two variables. On the basis of this fact it is shown that certain combinations of the quantities that characterize the trajectory of such a body satisfy well-known nonlinear equations: sine–Gordon, Korteweg–de Vries, Klein–Gordon, and nonlinear Schrödinger equation.
@article{TMF_1994_101_3_a4,
     author = {E. I. Bogdanov},
     title = {Spatially distributed classical {Lagrangian} mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {369--373},
     publisher = {mathdoc},
     volume = {101},
     number = {3},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a4/}
}
TY  - JOUR
AU  - E. I. Bogdanov
TI  - Spatially distributed classical Lagrangian mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 369
EP  - 373
VL  - 101
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a4/
LA  - ru
ID  - TMF_1994_101_3_a4
ER  - 
%0 Journal Article
%A E. I. Bogdanov
%T Spatially distributed classical Lagrangian mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 369-373
%V 101
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a4/
%G ru
%F TMF_1994_101_3_a4
E. I. Bogdanov. Spatially distributed classical Lagrangian mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 3, pp. 369-373. http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a4/