Spatially distributed classical Lagrangian mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 3, pp. 369-373 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that the existence of two nontrivial integrals of the motion makes it possible to parametrize the motion of a Lagrangian rigid body by two variables. On the basis of this fact it is shown that certain combinations of the quantities that characterize the trajectory of such a body satisfy well-known nonlinear equations: sine–Gordon, Korteweg–de Vries, Klein–Gordon, and nonlinear Schrödinger equation.
@article{TMF_1994_101_3_a4,
     author = {E. I. Bogdanov},
     title = {Spatially distributed classical {Lagrangian} mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {369--373},
     year = {1994},
     volume = {101},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a4/}
}
TY  - JOUR
AU  - E. I. Bogdanov
TI  - Spatially distributed classical Lagrangian mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 369
EP  - 373
VL  - 101
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a4/
LA  - ru
ID  - TMF_1994_101_3_a4
ER  - 
%0 Journal Article
%A E. I. Bogdanov
%T Spatially distributed classical Lagrangian mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 369-373
%V 101
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a4/
%G ru
%F TMF_1994_101_3_a4
E. I. Bogdanov. Spatially distributed classical Lagrangian mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 3, pp. 369-373. http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a4/

[1] Bogoyavlenskii O. I., UMN, 47:1 (1992), 107–146 | MR

[2] Baryakhtar V. G., Belokolos E. D., Golod P. I., Preprint ITF-84-128, Kiev, 1984

[3] Veselov A. P., DAN SSSR, 120:5 (1983), 1094–1097 | MR

[4] Drinfeld V. G., Sokolov V. V., Algebry Li i uravneniya tipa Kortevega–de Friza, Itogi nauki i tekhniki, 24, VINITI, M., 1984, 81–180 | MR

[5] Bogdanov E. I., TMF, 72:2 (1987), 244–254

[6] Bobenko A. I., Funkts. analiz i ego prilozh., 19:1 (1985), 6–19 | MR | Zbl

[7] Dodd P., Eilbek Dzh., Gibbon Dzh., Morris X., Solitony, Mir, M., 1988 | MR

[8] Lem Dzh. L., Vvedenie v teoriyu solitonov, Mir, M., 1983 | MR

[9] Golubev V. V., Lektsii po integrirovaniyu uravnenii dvizheniya tverdogo tela okolo nepodvizhnoi tochki, GIITL, M., 1953 | MR

[10] Bogdanov E. I., TMF, 91:3 (1992), 433–439 | MR

[11] Kirillov A. A., “Geometrcheskoe kvantovanie”, Itogi nauki i tekhniki, 4, VINITI, M., 1985, 141–178 | MR

[12] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | Zbl

[13] Fomenko A. T., Differentsialnaya geometriya i topologiya, MGU, M., 1983

[14] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[15] Nyuell A., Solitony v matematike i fizike, Mir, M., 1989 | MR