Nucleation with allowance for fluctuation effects
Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 2, pp. 312-318
Cet article a éte moissonné depuis la source Math-Net.Ru
A theory of homogeneous nucleation is developed on the basis of the concept of a hypersurface formed by a set of slowly varying order parameters $\xi$ in the space of all order parameters $\eta$ with respect to which a transition of the system from one phase state to another can take place. An equation that determines this hypersurface with allowance for fluctuation effects is obtained. The energy of formation of a nucleating center of critical size is estimated in the effective-field approximation for a system of gas–liquid type.
@article{TMF_1994_100_2_a12,
author = {S. I. Vashukov},
title = {Nucleation with allowance for fluctuation effects},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {312--318},
year = {1994},
volume = {100},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a12/}
}
S. I. Vashukov. Nucleation with allowance for fluctuation effects. Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 2, pp. 312-318. http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a12/
[1] Lifshits E. M., Pitaevskii L. P., Fizicheskaya kinetika, Nauka, M., 1979 | MR | Zbl
[2] Coch S. W., Lect. Notes Phys., 1984, no. 207
[3] Unger Chris, Klein W., Phys. Rev. B, 29:5 (1984), 2698 | DOI
[4] Vashukov S. I., ZhETF, 95:5 (1989), 1743
[5] Rabin Y., Gitterman M., Phys. Rev. A, 29:3 (1984), 1496 | DOI
[6] Patashinskii A. Z., Shumilo B. I., ZhETF, 77:4 (1979), 1417
[7] Ivanchenko Yu. M., Lisyanskii A. A., Filippov A. E., TMF, 71:3 (1987), 441–450 | MR
[8] Ma Sh., Sovremennaya teoriya kriticheskikh yavlenii, Mir, M., 1980
[9] Forster D., Gidrodinamicheskie fluktuatsii, narushennaya simmetriya i korrelyatsionnye funktsii, Atomizdat, M., 1980
[10] Langer J. S., Ann. Phys., 54:2 (1969), 258 | DOI