Minimum deformations of commutative algebra and linear group $GL(n)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 3, pp. 403-417 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the algebra of formal series $M_q(x^i)$, the relations of generalized commutativity that preserve the tensor $I_q$ grading and depend on parameters $q(i,k)$ are considered. A norm of the differential calculus on $M_q$ consistent with the $I_q$ grading is chosen. A new construction of a symmetrized tensor product of algebras of the type $M_q(x^i)$ and a corresponding definition of the minimally deformed linear group $QGL(n)$ and Lie algebra $qgl(n)$ are proposed. A study is made of the connection of $QGL(n)$ and $qgl(n)$ with the special matrix algebra $\operatorname {Mat}(n,Q)$, which consists of matrices with noncommuting elements. The deformed determinant in the algebra $\operatorname {Mat}(n,Q)$ is defined. The exponential mapping in the algebra $\operatorname {Mat}(n,Q)$ is considered on the basis of the Campbell–Hausdorff formula.
@article{TMF_1993_95_3_a0,
     author = {B. M. Zupnik},
     title = {Minimum deformations of commutative algebra and linear group $GL(n)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {403--417},
     year = {1993},
     volume = {95},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_95_3_a0/}
}
TY  - JOUR
AU  - B. M. Zupnik
TI  - Minimum deformations of commutative algebra and linear group $GL(n)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 403
EP  - 417
VL  - 95
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_95_3_a0/
LA  - ru
ID  - TMF_1993_95_3_a0
ER  - 
%0 Journal Article
%A B. M. Zupnik
%T Minimum deformations of commutative algebra and linear group $GL(n)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 403-417
%V 95
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1993_95_3_a0/
%G ru
%F TMF_1993_95_3_a0
B. M. Zupnik. Minimum deformations of commutative algebra and linear group $GL(n)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 3, pp. 403-417. http://geodesic.mathdoc.fr/item/TMF_1993_95_3_a0/

[1] Faddeev L. D., Reshetikhin N. Yu., Takhtadzhyan L. A., Algebra i analiz, 1:1 (1989), 178–206 | MR

[2] Drinfeld V. G., Zapiski nauchn. sem. LOMI, 155, 1986, 18–49 | MR | Zbl

[3] Manin Yu. I., Ann. Ins. Fourier, XXXVII:4 (1987), 191–205 ; Commun. Math. Phys., 123:1 (1989), 163–175 | DOI | MR | Zbl | DOI | MR | Zbl

[4] Woronovicz S. L., Commun. Math. Phys., 122:1 (1989), 125–170 ; Jimbo M., Lett. Math. Phys., 11:2 (1986), 247–252 | DOI | MR | DOI | MR | Zbl

[5] Berezin F. A., Vvedenie v algebru i analiz s antikommutiruyuschimi elementami, MGU, M., 1983 | MR

[6] Leites D. A., Teoriya supermnogoobrazii, Karelskii filial AN SSSR, Petrozavodsk, 1983 | Zbl

[7] Mosolova M. V., Matem. zametki, 29:1 (1981), 35–44 | MR

[8] Gurevich D. I., DAN SSSR, 288:4 (1986), 797–801 | MR | Zbl

[9] Wess J., Zumino B., Nucl. Phus. B (Proc. Suppl.), 18 (1990), 302–310 | DOI | MR

[10] Schirrmacher A., Wess J., Zumino B., Z. Phys. C, 49:2 (1991), 317–324 | DOI | MR

[11] Schirrmacher A., Z. Phys. C, 50:2 (1991), 321–328 | DOI | MR

[12] Kulish P. P., Sklyanin E. K., Zapiski nauchn. sem. LOMI, 95, 1980, 129–160 | MR

[13] Vladimirov B. C., Volovich I. V., TMF, 59:1 (1984), 3–27 | MR | Zbl

[14] Shvarts A. S., TMF, 60:1 (1984), 37–42 | MR | Zbl

[15] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966 | MR

[16] Zamolodchikov A. B., Zamolodchikov Al.B., Ann. Phys., 120:2 (1979), 253–291 | DOI | MR

[17] Smirnov F. A., Commun. Math. Phys., 132:2 (1990), 415–439 | DOI | MR | Zbl