Scattering of clusters in quantum calogero model
Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 2, pp. 341-347

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that scattering of particles in the Calogero model, which recently drew attention in connection with $c=1$ strings and integrable models in statistical mechanics, is reduced to two-particle collisions. It follows from Harish-Chandra and Gindikin–Karpelevich results, related to the harmonic analysis on simple Lie groups. Unfortunately their formulae don't work if particles form clusters in the asymptotics. We reformulate their results in a form which allows to apply them to this situation. The scattering of clusters is also factorizible, but depends on structures of constituents. In conclusion we discuss a similar problem in the deformed Calogero model related to quantum groups, which describes also interactions of excited states in the XXZ-model.
@article{TMF_1993_95_2_a16,
     author = {M. A. Olshanetsky},
     title = {Scattering of clusters in quantum calogero model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {341--347},
     publisher = {mathdoc},
     volume = {95},
     number = {2},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_95_2_a16/}
}
TY  - JOUR
AU  - M. A. Olshanetsky
TI  - Scattering of clusters in quantum calogero model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 341
EP  - 347
VL  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_95_2_a16/
LA  - ru
ID  - TMF_1993_95_2_a16
ER  - 
%0 Journal Article
%A M. A. Olshanetsky
%T Scattering of clusters in quantum calogero model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 341-347
%V 95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1993_95_2_a16/
%G ru
%F TMF_1993_95_2_a16
M. A. Olshanetsky. Scattering of clusters in quantum calogero model. Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 2, pp. 341-347. http://geodesic.mathdoc.fr/item/TMF_1993_95_2_a16/