Scattering of clusters in quantum calogero model
Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 2, pp. 341-347 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that scattering of particles in the Calogero model, which recently drew attention in connection with $c=1$ strings and integrable models in statistical mechanics, is reduced to two-particle collisions. It follows from Harish-Chandra and Gindikin–Karpelevich results, related to the harmonic analysis on simple Lie groups. Unfortunately their formulae don't work if particles form clusters in the asymptotics. We reformulate their results in a form which allows to apply them to this situation. The scattering of clusters is also factorizible, but depends on structures of constituents. In conclusion we discuss a similar problem in the deformed Calogero model related to quantum groups, which describes also interactions of excited states in the XXZ-model.
@article{TMF_1993_95_2_a16,
     author = {M. A. Olshanetsky},
     title = {Scattering of clusters in quantum calogero model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {341--347},
     year = {1993},
     volume = {95},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_95_2_a16/}
}
TY  - JOUR
AU  - M. A. Olshanetsky
TI  - Scattering of clusters in quantum calogero model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 341
EP  - 347
VL  - 95
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_95_2_a16/
LA  - ru
ID  - TMF_1993_95_2_a16
ER  - 
%0 Journal Article
%A M. A. Olshanetsky
%T Scattering of clusters in quantum calogero model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 341-347
%V 95
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1993_95_2_a16/
%G ru
%F TMF_1993_95_2_a16
M. A. Olshanetsky. Scattering of clusters in quantum calogero model. Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 2, pp. 341-347. http://geodesic.mathdoc.fr/item/TMF_1993_95_2_a16/

[1] Calogero F., J. Math. Phys., 12 (1971), 419 ; Lett. Nuovo Cim., 13 (1975), 411 | DOI | MR | DOI | MR

[2] Olshanetsky M. A., Perelomov A. M., Phys. Rep., 94 (1983), 313 | DOI | MR

[3] Kazakov V. A., “Bozonic strings and string field theories in one- dimensional target space”, Random surfaces and quantum gravity (Proceedings of the NATO Advanced Research Workshop held in Cargèse, may–June 1990), NATO Advanced Science Institutes Series B, 262, Plenum Press, New York, 1991 | MR

[4] Olshanetsky M. A., Int. J. Mod. Phys., 7 (1992), 4259 | DOI | MR

[5] Boulatov D. A., Kazakov V. A., One-dimensional string theory with vortices as the upside-down matrix oscillator, preprint LPTENS 91/24, august 1991 | MR | Zbl

[6] Polychronakos A., Nucl. Phys., B324 (1989), 597 | DOI | MR

[7] Leinas J. M., Myrheim J., Phys. Rev., B37 (1988), 9286 ; Polychronakos A., Phys. Lett., B264 (1991), 362 | DOI | DOI | MR

[8] Baxter R. J., Exactly Solved Models in Statistical Mechanics, Acad. Press, N. Y., 1982 | MR | Zbl

[9] Harish-Chandra, Amer. Journ. of Math., 80 (1958), 241 | DOI | MR | Zbl

[10] Gindikin S. G., Karpelevich F. I., Dokl. Acad. Nauk, 145 (1962), 252 | MR

[11] Zamolodchikov A. B., Zamolodchikov Al. B., Ann. Phys., 120 (1979), 253 | DOI | MR

[12] Gangolli R., Adv. Math., 93 (1971), 150 ; Helgason S., Adv. Math., 5 (1970), 1 | MR | Zbl | DOI | MR | Zbl

[13] Zabrodin A. V., Mod. Phys. Lett., 7 (1992), 441 | DOI | MR | Zbl

[14] Gaspar G., Rahman M., Basic Hypergeometric Series, Cambridge Univ. Press, 1990 | MR

[15] Koornwinder T., “Orthogonal polynomials in connection with quantum groups”, Orthogonal polynomials (Columbus, OH, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 294, Kluwer Acad. Publ., Dordrecht, 1990, 257–292 | MR