Reflectionless potentials and soliton series of the KDV equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 2, pp. 286-301 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Potentials of the Schrödinger equation, slowly decreasing at infinity, generate an infinite discrete spectrum converging to zero. The inverse scattering problem in the class of such potentials is solved in a constructive way similarly to the classical soliton theory. An infinite-dimensional system arising from Backlund transformations over soliton solutions plays the role of a determinant representation of the potential. The asymptotics at infinity is derived by use of the Poisson summation formula. An application to the long-time asymptotics of the solution of the Korteweg-de Vries equation is considered.
@article{TMF_1992_93_2_a7,
     author = {V. Yu. Novokshenov},
     title = {Reflectionless potentials and soliton series of the {KDV} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {286--301},
     year = {1992},
     volume = {93},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a7/}
}
TY  - JOUR
AU  - V. Yu. Novokshenov
TI  - Reflectionless potentials and soliton series of the KDV equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 286
EP  - 301
VL  - 93
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a7/
LA  - ru
ID  - TMF_1992_93_2_a7
ER  - 
%0 Journal Article
%A V. Yu. Novokshenov
%T Reflectionless potentials and soliton series of the KDV equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 286-301
%V 93
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a7/
%G ru
%F TMF_1992_93_2_a7
V. Yu. Novokshenov. Reflectionless potentials and soliton series of the KDV equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 2, pp. 286-301. http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a7/

[1] Ablowitz M. J., Segur H., Solitons and the inverse scattering transform. Studies in Applied Mathematics, SIAM, Philadelphia, 1981 | MR | Zbl

[2] Marchenko V. A., Sturm-Lioville operators and their applications, Naukova Dumka, Kiev, 1977 | MR

[3] Chadan K., Sabatier B. C., Inverse problems in quantum scatteringtheory, Springer-Verlag, New York, 1977 | MR | Zbl

[4] Shabat A. B., “The infiniterdimensional dressing dynamical system”, Inverse Problems, 8:2 (1992), 303–308 | DOI | MR | Zbl

[5] Darboux G., Comp. Rend., 94 (1882), 1456–1459

[6] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer-Verlag, Berlin Heidelberg, 1991 | MR | Zbl

[7] Gesztezy F., Karwowski W., Zhao Z., “Limits of soliton solutions”, Duke Math. J., 68:1 (1992), 101–150 | DOI | MR

[8] Whittaker E. T., Watson G. N., A course of modern analysys, Cambridge Univ. Press, 1927 | MR

[9] De Bruijn N. G., Asymptotic methods in analysis, North-Holland, Amsterdam, 1958 | MR | Zbl

[10] Titchmarsh E. C., Introduction to the theory of Fourier integral, Oxford Univ. Press, 1937 | MR

[11] Crum M. M., Quart. J. Math., 2:6 (1955), 121 | DOI | MR

[12] Bateman H., Erdelyi A., Higher transcendental functions, v. 3, McGraw-Hill, New York, 1955 | Zbl

[13] Gradshtein I. S., Ryzhik I. M., Tables of integrals, series and products, Academic Press, New York, 1980 | MR