Symmetry groups in the extended quantization scheme
Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 2, pp. 231-248 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An extended quantization scheme that in essence is similar to geometric quantization is considered. The phase space is extended, and the methods of quantizing constrained systems are used. A condition for choosing coordinates in which the quantization preserves the symmetry group is obtained. A mechanism for determining the scalar product in Dirac's quantization method is proposed.
@article{TMF_1992_93_2_a3,
     author = {G. P. Jorjadze and I. T. Sarishvili},
     title = {Symmetry groups in the extended quantization scheme},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {231--248},
     year = {1992},
     volume = {93},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a3/}
}
TY  - JOUR
AU  - G. P. Jorjadze
AU  - I. T. Sarishvili
TI  - Symmetry groups in the extended quantization scheme
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 231
EP  - 248
VL  - 93
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a3/
LA  - ru
ID  - TMF_1992_93_2_a3
ER  - 
%0 Journal Article
%A G. P. Jorjadze
%A I. T. Sarishvili
%T Symmetry groups in the extended quantization scheme
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 231-248
%V 93
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a3/
%G ru
%F TMF_1992_93_2_a3
G. P. Jorjadze; I. T. Sarishvili. Symmetry groups in the extended quantization scheme. Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 2, pp. 231-248. http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a3/

[1] Berezin F. A., Comm. Math. Phys., 40 (1975), 153 | DOI | MR | Zbl

[2] Green M. B., Schwarz J. H., Witten E., Superstring theory, Cambridge University Press, 1987 | MR | Zbl

[3] Morozov A. Yu., UFN, 150:3 (1986), 337 | DOI | MR

[4] Gates E., Potting R., Taylor C., Velikson B., Constrained Dynamics, Geometric Quantization and the Borel-Weil-Bott Theorem, preprint CWRU-TH-89/12, Clevelend, 1989 | MR

[5] Simms D. J., Woodhouse N. M. J., Lectures on Geometric Quantization, Lect. Note in Phys., 53, Springer, 1976 | MR | Zbl

[6] Jorjadze G., Lavrelashvili G., Sarishvili I., Quantization Scheme Based on the Extension of Phase Space, preprint MPI-Ph/92-10, MPI, Munchen, 1992 | MR

[7] Jorjadze G., Lavrelashvili G., Sarishvili I., Constrained Dynamical Systems and Geometric Quantization, preprint TMI P-05, Tbilisi, 1991

[8] Dirac P. A. M., Lectures in Quantum Mechanics, Academic, New York, 1965 | MR

[9] Gupta S., Proc. Roy. Soc. A, 63 (1950), 681 | MR | Zbl

[10] Faddeev L. D., Slavnov A. A., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR | Zbl

[11] Faddeev L. D., Shatashvili S., Phys. Lett. B, 167 (1986), 225 | DOI

[12] Carruthers P., Nieto M., Rev. Mod. Phys., 40 (1968), 411 | DOI

[13] Faddeev L., Jackiw R., Phys. Rev. Lett., 60 (1988) | DOI | MR | Zbl

[14] Plyushchay M. S., Spin from isospin: the model of superparticle in a non-Grassmannian approach, preprint IHEP 92-13, Protvino, 1992 ; Quantization of classical $SL(2,R)$-system and representations of $\overline{SL(2,R)}$ group, preprint IHEP 91-70, Protvino, 1991 | MR | Zbl

[15] Jackiw R., Nair V. P., Phys. Rev. D, 43 (1991), 1933 | DOI | MR

[16] Bukhbinder I. L., Lyakhovich S. L., TMF, 81:2 (1989), 193 | MR