Limit distribution function of inhomogeneities in regions with random boundary. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 1, pp. 98-112
Cet article a éte moissonné depuis la source Math-Net.Ru
A study is made of the interaction of systems of charged particles with a membrane consisting of inhomogeneities randomly distributed in accordance with the same law in the neighborhoods of corresponding sites of a planar crystal lattice. A system of equations for the self-consistent potential $U_1(x,\xi^0,\dots,\xi^N,\dots)$ and density of surface charges $\sigma(x,\xi^0,\dots,\xi^N,\dots)$ is derived and solved.
@article{TMF_1992_92_1_a8,
author = {M. Yu. Rasulova},
title = {Limit distribution function of inhomogeneities in regions with random {boundary.~I}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {98--112},
year = {1992},
volume = {92},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1992_92_1_a8/}
}
M. Yu. Rasulova. Limit distribution function of inhomogeneities in regions with random boundary. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 1, pp. 98-112. http://geodesic.mathdoc.fr/item/TMF_1992_92_1_a8/
[1] Petrina D. Ya., TMF, 59:1 (1984), 104–116 | MR
[2] Petrina D. Ya., ZhVMiMF, 24:5 (1984), 709–721 | MR | Zbl
[3] Rasulova M. Yu., DAN UkrSSR. Fiz-mat i tekh. nauki, 1988, no. 3, 62–65
[4] Rasulova M. Yu., Izv. AN UzSSR, 1988, no. 6, 48–51
[5] Rytov S. M., Kravtsov Yu. A., Tatarskii V. I., Vvedenie v statisticheskuyu radiofiziku, Chast 2. Sluchainye polya, Nauka, M., 1978
[6] Tozoni S. V., Maergoiz I. D., Raschet trekhmernykh elektromagnitnykh polei, Tekhnika, K., 1974