Effective collision frequency method in the theory of the conductivity of Coulomb systems. I. Weakly nonideal plasma and the classical limit
Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 3, pp. 510-523 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The effective collision frequency method proposed earlier by the authors is developed to calculate the frequency-dependent conductivity of a Coulomb system. In part I, the equation of motion for the two-particle Green's function is used to obtain an exact diagram representation for the electron effective collision frequency $\nu_e(p,\omega)$. This representation makes it possible to separate the main contribution in the limit of a weak interaction. The function $\nu_e(p,\omega)$ is calculated for a weakly nonideal plasma for arbitrary degeneracy with allowance for the effects of screening and the the ion dynamics. A comparison with the corresponding results of the kinetic equation method is made. The problem of eliminating the Coulomb divergence for the conductivity of a weakly nonideal plasma on the transition to the classical limit is considered.
@article{TMF_1992_91_3_a14,
     author = {V. B. Bobrov and S. A. Triger},
     title = {Effective collision frequency method in the theory of the conductivity of {Coulomb} {systems.~I.} {Weakly} nonideal plasma and the classical limit},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {510--523},
     year = {1992},
     volume = {91},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_91_3_a14/}
}
TY  - JOUR
AU  - V. B. Bobrov
AU  - S. A. Triger
TI  - Effective collision frequency method in the theory of the conductivity of Coulomb systems. I. Weakly nonideal plasma and the classical limit
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 510
EP  - 523
VL  - 91
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_91_3_a14/
LA  - ru
ID  - TMF_1992_91_3_a14
ER  - 
%0 Journal Article
%A V. B. Bobrov
%A S. A. Triger
%T Effective collision frequency method in the theory of the conductivity of Coulomb systems. I. Weakly nonideal plasma and the classical limit
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 510-523
%V 91
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1992_91_3_a14/
%G ru
%F TMF_1992_91_3_a14
V. B. Bobrov; S. A. Triger. Effective collision frequency method in the theory of the conductivity of Coulomb systems. I. Weakly nonideal plasma and the classical limit. Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 3, pp. 510-523. http://geodesic.mathdoc.fr/item/TMF_1992_91_3_a14/

[1] Silin V. P., Vvedenie v kineticheskuyu teoriyu gazov, Nauka, M., 1971

[2] Klimontovich Yu. L., Kineticheskaya teoriya neidealnogo gaza i neidealnoi plazmy, Nauka, M., 1975 | MR

[3] Akhiezer A. I., Peletminskii S. V., Metody statisticheskoi fiziki, Nauka, M., 1977 | MR

[4] Zubarev D. N., Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971

[5] Kreft V.-D., Kremp D., Ebeling V., Repke G., Kvantovaya statistika sistem zaryazhennykh chastits, Mir, M., 1988

[6] Kubo R., J. Phys. Soc. Japan, 2 (1957), 570–583 | DOI | MR

[7] Bobrov V. B., Redmer R., Repke G., Triger S. A., TMF, 86:2 (1991), 300–311

[8] Bobrov V. B., Redmer R., Repke G., Triger S. A., TMF, 86:3 (1991), 425–437

[9] Bobrov V. B., Triger S. A., DAN SSSR, 319:1 (1991), 154–157

[10] Rezibua P., De Lener M., Klassicheskaya kineticheskaya teoriya zhidkostei i gazov, Mir, M., 1980

[11] Perel V. I., Eliashberg G. M., ZhETF, 41 (1961), 886–893

[12] Bobrov V. B., Triger S. A., ZhETF, 86 (1984), 514–520

[13] Baus M., Physica A, 88 (1977), 319–335, 336–351, 519–531 | DOI

[14] Boercker D. B., Dufty J. W., Phys. Rev. A, 23 (1981), 1952–1968 | DOI | MR

[15] Sjorgen L., Hansen J. P., Pollock E. L., Phys. Rev. A, 24 (1981), 1544–1560 | DOI

[16] Boercker D. B., Phys. Rev. A, 23 (1981), 1969–1981 | DOI | MR

[17] Ballentine L. E., Heaney W. J., J. Phys. C, 7 (1974), 1985–1998 | DOI

[18] Shvets V. T., TMF, 86:1 (1991), 111–119

[19] Bobrov V. B., Triger S. A., DAN SSSR, 310:4 (1990), 850–853

[20] Lifshits E. M., Pitaevskii L. P., Fizicheskaya kinetika, Nauka, M., 1979 | MR | Zbl

[21] Bobrov V. B., Tovstopyat-Nelip I. I., Trigger S. A., Physica A, 167 (1990), 810–832 | DOI

[22] Bobrov V. B., Tovstopyat-Nelip I. I., Trigger S. A., Physica A, 170 (1990), 198–210 | DOI

[23] Abrikosov A. A., Gorkov L. P., Dzyaloshinskii I. E., Metody kvantovoi teorii polya v statisticheskoi fizike, GIFML, M., 1962 | MR

[24] Kovalenko N. P., Krasnyi Yu. P., Triger S. A., Statisticheskaya teoriya zhidkikh metallov, Nauka, M., 1990

[25] Gould H. A., De Witt H. E., Phys. Rev., 155 (1967), 168–182

[26] Williams R. H., De Witt H. E., Phys. Fluids., 12 (1969), 2326–2341 | DOI

[27] Rogers F. J., De Witt H. E., Boercker D. B., Phys. Lett. A, 82 (1981), 331–334 | DOI

[28] Morales F., Kilimann K., Redmer R. et al., Contrib. Plasma Phys., 29 (1989), 413–425 | DOI

[29] Kelbg G., Ann. Phys. B, 13 (1964), 354–360 ; 14, 394–401 | MR | MR

[30] Hansen J. P., McDonald I. R., Phys. Rev. Lett., 41 (1978), 1379–1382 | DOI

[31] Hansen J. P., McDonald I. R., Phys. Rev. A, 23 (1981), 2041–2059 | DOI

[32] Deutsch C., Phys. Lett. A, 60 (1977), 317–320 | DOI