Fractional integral and its physical interpretation
Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 3, pp. 354-368 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A relationship is established between Cantor's fractal set (Cantor's bars) and a fractional integral. The fractal dimension of the Cantor set is equal to the fractional exponent of the integral. It follows from analysis of the results that equations in fractional derivatives describe the evolution of physical systems with loss, the fractional exponent of the derivative being a measure of the fraction of the states of the system that are preserved during evolution time $t$. Such systems can be classified as systems with “residual” memory, and they occupy an intermediate position between systems with complete memory, on the one hand, and Markov systems, on the other. The use of such equations to describe transport and relaxation processes is discussed. Some generalizations that extend the domain of applicability of the fractional derivative concept are obtained.
@article{TMF_1992_90_3_a1,
     author = {R. R. Nigmatullin},
     title = {Fractional integral and its physical interpretation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {354--368},
     year = {1992},
     volume = {90},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_90_3_a1/}
}
TY  - JOUR
AU  - R. R. Nigmatullin
TI  - Fractional integral and its physical interpretation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 354
EP  - 368
VL  - 90
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_90_3_a1/
LA  - ru
ID  - TMF_1992_90_3_a1
ER  - 
%0 Journal Article
%A R. R. Nigmatullin
%T Fractional integral and its physical interpretation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 354-368
%V 90
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1992_90_3_a1/
%G ru
%F TMF_1992_90_3_a1
R. R. Nigmatullin. Fractional integral and its physical interpretation. Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 3, pp. 354-368. http://geodesic.mathdoc.fr/item/TMF_1992_90_3_a1/

[1] Mandelbrot B., Fractal Geometry of Nature, Freeman, San-Francisco, 1983 | MR

[2] “Fraktaly v fizike”, Trudy VI Mezhd. simpoziuma po fraktalam v fizike, Mir, M., 1988 | MR

[3] Pajkossy T., Nyikos L., Electrochimika Acta, 34:2 (1989), 171–179 | DOI

[4] Kaplan T., Gray L. J., Lin S. H., Phys. Rev. B, 35:10 (1987), 5379–5381 | DOI | MR

[5] Sapoval B., Solid State Ionics, 23 (1987), 253–259 | DOI

[6] Le Mehaute A., Gnibert A., Delaye M., Filippi C., S. R. Acad. Sci. II, 294 (1982), 835–837

[7] Le Mehaute A., Crepy G., Solid State Ionics, 9–10 (1983), 359–364

[8] Le Mehaute A., Dugast A., J. of Power Sources, 9 (1983), 359–364 | DOI

[9] Nigmatullin R. R., Physica Status Solidi (b), 123 (1984), 739–745 | DOI

[10] Nigmatullin R. R., Physica Status Solidi (b), 124 (1984), 389–393 | DOI

[11] Oldham K., Spanier J., Fractional Calculus, Academic Press, London–New York, 1973 | MR

[12] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[13] Babenko Yu. I., Teplomassoobmen. Metod rascheta teplovykh i diffuzionnykh potokov, Khimiya, L., 1986

[14] Nigmatullin R. Sh., Belavin B. A., Trudy KAI, 82 (1964), 58–61

[15] Nigmatullin R. R., Physica Status Solidi (b), 133 (1986), 425–430 | DOI

[16] Dissado L. A., Nigmatullin R. R., Hill R. M., Dynamical Processes in Condensed Matter, 63, ed. M. Evans, 1985, 253–292

[17] Nigmatullin R. R., FTT, 27:5 (1985), 1583–1585

[18] Jonscher A. K., Dielectric Relaxation in Solids, Chelsea Dielectric Press, London, 1983

[19] Braun V., Dielektriki, IL, M., 1961

[20] Zubarev D. N., Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971