Unitary analog of the Anderson model. Purely point spectrum
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 3, pp. 337-365
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A random operator that is the unitary analog of the Hamiltonian which arises in the one-dimensional discrete Anderson model is studied. It is shown that with probability 1 such an operator has a purely point spectrum and rapidly decreasing eigenfunctions.
			
            
            
            
          
        
      @article{TMF_1991_89_3_a1,
     author = {I. A. Koshovets},
     title = {Unitary analog of the {Anderson} model. {Purely} point spectrum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {337--365},
     publisher = {mathdoc},
     volume = {89},
     number = {3},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a1/}
}
                      
                      
                    I. A. Koshovets. Unitary analog of the Anderson model. Purely point spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 3, pp. 337-365. http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a1/
