Unitary analog of the Anderson model. Purely point spectrum
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 3, pp. 337-365

Voir la notice de l'article provenant de la source Math-Net.Ru

A random operator that is the unitary analog of the Hamiltonian which arises in the one-dimensional discrete Anderson model is studied. It is shown that with probability 1 such an operator has a purely point spectrum and rapidly decreasing eigenfunctions.
@article{TMF_1991_89_3_a1,
     author = {I. A. Koshovets},
     title = {Unitary analog of the {Anderson} model. {Purely} point spectrum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {337--365},
     publisher = {mathdoc},
     volume = {89},
     number = {3},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a1/}
}
TY  - JOUR
AU  - I. A. Koshovets
TI  - Unitary analog of the Anderson model. Purely point spectrum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 337
EP  - 365
VL  - 89
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a1/
LA  - ru
ID  - TMF_1991_89_3_a1
ER  - 
%0 Journal Article
%A I. A. Koshovets
%T Unitary analog of the Anderson model. Purely point spectrum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 337-365
%V 89
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a1/
%G ru
%F TMF_1991_89_3_a1
I. A. Koshovets. Unitary analog of the Anderson model. Purely point spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 3, pp. 337-365. http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a1/