Unitary analog of the Anderson model. Purely point spectrum
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 3, pp. 337-365 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A random operator that is the unitary analog of the Hamiltonian which arises in the one-dimensional discrete Anderson model is studied. It is shown that with probability 1 such an operator has a purely point spectrum and rapidly decreasing eigenfunctions.
@article{TMF_1991_89_3_a1,
     author = {I. A. Koshovets},
     title = {Unitary analog of the {Anderson} model. {Purely} point spectrum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {337--365},
     year = {1991},
     volume = {89},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a1/}
}
TY  - JOUR
AU  - I. A. Koshovets
TI  - Unitary analog of the Anderson model. Purely point spectrum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 337
EP  - 365
VL  - 89
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a1/
LA  - ru
ID  - TMF_1991_89_3_a1
ER  - 
%0 Journal Article
%A I. A. Koshovets
%T Unitary analog of the Anderson model. Purely point spectrum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 337-365
%V 89
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a1/
%G ru
%F TMF_1991_89_3_a1
I. A. Koshovets. Unitary analog of the Anderson model. Purely point spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 3, pp. 337-365. http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a1/

[1] Anderson P., Phys. Rev., 109 (1958), 1492 | DOI

[2] Benderskii M. M., Pastur L. A., Mat. sb., 82:2 (1970), 273–284 | MR

[3] Avron I., Simon B., Duke Math. J., 50 (1983), 369–391 | DOI | MR | Zbl

[4] Figotin A. L., Pastur L. A., Selecta Mathematica Sovetica, 3:1 (1983/84), 69–86 | MR

[5] Koshovets I. A., TMF, 85:2 (1990), 193–204 | MR

[6] Pastur L. A., Commun. Math. Phys., 75 (1980), 179–196 | DOI | MR | Zbl

[7] Edwards J. T., Thouless D. J., J. Phys. C, 4 (1971), 453 | DOI

[8] Wegner F., Z. Phys. B-Condensed Matter., 44 (1981), 9–15 | DOI | MR

[9] Casati G., Chirikov B. V., Ford J., Izraelev F. M., Lect. Notes in Phys., 92, 1977, 334–352 | MR

[10] Sinay Ya. G., Physica A, 163:1 (1990), 197–204 | DOI | MR

[11] Dreifus H., Klein A., Commun. Math. Phys., 124 (1989), 285–299 | DOI | MR | Zbl

[12] Spencer T., J. Stat. Phys., 51 (1988), 1009 | DOI | MR | Zbl

[13] Carmona R., Klein A., Martinelli F., Commun. Math. Phys., 108 (1987), 41–66 | DOI | MR | Zbl

[14] Martinelli F., Scoppola E., Riv. Nuovo Cim., 10 (1987), 2–90 | DOI | MR

[15] Sinay Ya. G., J. Stat. Phys., 46:5/6 (1987), 861–909 | DOI | MR

[16] Kirsh V., Molchanov S. A., Pastur L. A., Funkts. analiz i ego prilozh., 24:3 (1990), 14–25 | MR

[17] Molchanov S., Lectures on the localization theory, Preprint, California State University, 1990

[18] Pastur L. A., “Spektralnaya teoriya sluchainykh samosopryazhennykh operatorov”, Itogi nauki i tekhniki. Teoriya veroyatnostei, 25, VINITI, M., 1987, 3–67

[19] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR

[20] Delyon F., Levy Y., Souillard B., J. Stat. Phys., 41 (1985), 375–388 | DOI | MR

[21] Kotani S., Contemp. Math., 50, 1986, 277–286 | DOI | MR | Zbl

[22] Simon B., Wolff T., Commun. Pure and Appl. Math., 39 (1986), 75–90 | DOI | MR | Zbl

[23] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR