Propagator of Yang–Mills field in Hamiltonian Gauge
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 2, pp. 238-245 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The arbitrariness of the choice of the propagator of the Yang–Mills field in the Hamiltonian gauge is considered. Transition from the Coulomb to the Hamiltonian gauge yields a class of propagators that includes both a translationally noninvariant propagator as well as one of the Mandelstam–Leibbrandt type.
@article{TMF_1991_89_2_a7,
     author = {G. A. Kravtsova and A. A. Slavnov},
     title = {Propagator of {Yang{\textendash}Mills} field in {Hamiltonian} {Gauge}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {238--245},
     year = {1991},
     volume = {89},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_2_a7/}
}
TY  - JOUR
AU  - G. A. Kravtsova
AU  - A. A. Slavnov
TI  - Propagator of Yang–Mills field in Hamiltonian Gauge
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 238
EP  - 245
VL  - 89
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_89_2_a7/
LA  - ru
ID  - TMF_1991_89_2_a7
ER  - 
%0 Journal Article
%A G. A. Kravtsova
%A A. A. Slavnov
%T Propagator of Yang–Mills field in Hamiltonian Gauge
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 238-245
%V 89
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1991_89_2_a7/
%G ru
%F TMF_1991_89_2_a7
G. A. Kravtsova; A. A. Slavnov. Propagator of Yang–Mills field in Hamiltonian Gauge. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 2, pp. 238-245. http://geodesic.mathdoc.fr/item/TMF_1991_89_2_a7/

[1] Slavnov A. A., Faddeev L. D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1988 | MR | Zbl

[2] Caracciolo S., Curci G., Menotti P., Phys. Lett., 113B:4 (1982), 311–314 | DOI

[3] Slavnov A. A., Frolov S. A., TMF, 68:3 (1986), 360–367 | MR

[4] Kummer W., Acta Phys. Austr., 41:3–4 (1975), 315–334 | MR

[5] Konetshny W., Kummer W., Nucl. Phys., B100:1 (1975), 106–124 | DOI

[6] Willemsen J. F., Phys. Rev., 17:2 (1978), 574–584 | MR

[7] Dahmen H. D., Sholz B., Steiner F., Phys. Lett., 177B:5 (1982), 339–341 | DOI | MR

[8] Friedman J. L., Papastamatiou N. J., Nucl. Phys., B219:1 (1983), 125–142 | DOI

[9] Haller Kurt, Phys. Rev., D36:6 (1987), 1830–1838 | MR

[10] Haller Kurt, Phys. Rev., D36:6 (1987), 1839–1845 | MR

[11] Landshoff P. V., Phys. Lett., 227B:3–4 (1989), 427–430 | DOI | MR

[12] James K. A., Landshoff P. V., Phys. Lett., 251B:1 (1990), 167–174

[13] Leibbrandt G., Nucl. Phys., B310:2 (1988), 405–427 | DOI | MR

[14] Leibbrandt G., Introduction to Noncovariant Gauges, Preprint Mathematical Series No 108, Univ. of Guelph, Ontario, 1986 | MR

[15] Leibbrandt G., Unified-gauge formalism at two loops for a class of physical gauge, Preprint CERN-TH. 5588/89

[16] Frolov S. A., BRST-kvantovanie kalibrovochnykh teorii vo vremeni-podobnykh kalibrovkakh, Preprint No 8, MIAN, M., 1989

[17] Sholz B., Steiner F., Path Integral Quantization in the Temporal Gauge, Preprint DESY, 83-055, Hamburg, 1983

[18] Slavnov A. A., Frolov S. A., TMF, 73:2 (1987), 199–209 | MR