Generation of colliding gravitational-electromagnetic waves by means of a Harrison transformation
Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 1, pp. 136-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For cylindrical metrics that admit two-parameter commutative groups of motions with two-dimensional spacelike transitivity surfaces, the conditions for the existence of colliding waves are extended to the case of solutions of the Einstein–Maxwell equations generated by a Harrison transformation. For the example of the six-parameter electrovac generalization $g\tilde S(a,b,c)$ of the vacuum solution $\tilde S(a,b,c)$ we obtain the solution $g\tilde S(a,0,-1)$, which is a field produced by colliding gravitational-electromagnetic waves and generalizes the Ferrari–Ibafiez vacuum metric.
@article{TMF_1990_83_1_a13,
     author = {A. Garcia Diaz},
     title = {Generation of~colliding gravitational-electromagnetic waves by~means {of~a~Harrison} transformation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {136--146},
     year = {1990},
     volume = {83},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a13/}
}
TY  - JOUR
AU  - A. Garcia Diaz
TI  - Generation of colliding gravitational-electromagnetic waves by means of a Harrison transformation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 136
EP  - 146
VL  - 83
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a13/
LA  - ru
ID  - TMF_1990_83_1_a13
ER  - 
%0 Journal Article
%A A. Garcia Diaz
%T Generation of colliding gravitational-electromagnetic waves by means of a Harrison transformation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 136-146
%V 83
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a13/
%G ru
%F TMF_1990_83_1_a13
A. Garcia Diaz. Generation of colliding gravitational-electromagnetic waves by means of a Harrison transformation. Teoretičeskaâ i matematičeskaâ fizika, Tome 83 (1990) no. 1, pp. 136-146. http://geodesic.mathdoc.fr/item/TMF_1990_83_1_a13/

[1] Bell P., Szekeres P., Gen. Relativ. Gravit., 5 (1974), 275–286 | DOI | MR

[2] Chandrasekhar S., Xanthopoulos B. S., Proc. Roy. Soc. London, A398 (1985), 223–259 ; A410 (1987), 311–336 | DOI | MR | Zbl | DOI | MR | Zbl

[3] Sibgatullin N. R., Kolebaniya i volny v silnykh gravitatsionnykh i elektromagnitnykh polyakh, Nauka, M., 1984 | MR | Zbl

[4] Kinnersley W., Chitre D. M., J. Math. Phys., 18 (1977), 1538 ; 19 (1978), 1926 ; 19, 2037 | DOI | DOI | DOI

[5] Harrison K., J. Math. Phys., 9 (1968), 1744–1757 | DOI

[6] García A., J. Math. Phys., 29 (1988), 1442 | DOI | MR | Zbl

[7] Ferrari V., Ibañez J., Gen. Relativ. Gravit., 19 (1987), 405–425 | DOI | MR | Zbl

[8] Kramer D., Stephani H., MacCallum M., Herlt E., Exact solutions of the Einstein's field equations, Cambridge University Press, Cambridge, 1980 | MR | Zbl

[9] Cosgrove C. M., J. Math. Phys., 22:1 (1981), 2624–2639 | DOI | MR | Zbl

[10] Khan K., Penrose R., Nature (London), 229 (1971), 185–186 | DOI

[11] Ehlers J., Kundt W., Gravitation: an introduction to current research, ed. L. Witten, Wiley, New York–London, 1962 | MR | Zbl

[12] Chandrasekhar S., Xanthopoulos B. S., Proc. Roy. Soc. London, A410 (1987), 311–336 | DOI | MR | Zbl

[13] Sbytov Yu. G., ZhETF, 63 (1972), 737–744 ; Sov. Phys. JETP, 36 (1972), 386–390 ; ЖЭТФ, 71 (1976), 2001–2009 ; Sov. Phys. JETP, 44 (1976), 1051–1055 | MR

[14] Logunov A. A., Mestvirishvili M. A., Relyativistskaya teoriya gravitatsii, Nauka, M., 1989 | MR

[15] Ernst F. J., García D. A., Hauser I., J. Math. Phys., 28:12 (1987), 2951–2960 | DOI | MR | Zbl