Local supertwistors and $N=2$ conformal supergravity
Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 2, pp. 253-262
Cet article a éte moissonné depuis la source Math-Net.Ru
$N=2$ super symmetric extension of the local twistor theory is formulated. A supertwistor superconnection determined by the superconformal structure of the base superspace is introduced on the bundle of $N=2$ local supertwistors. It is proved that the Yang–Mills equations for this superconnection coincide exactly with the Bach equations describing the dynamics of $N=2$ conformal supergravity.
@article{TMF_1989_79_2_a8,
author = {S. A. Merkulov},
title = {Local supertwistors and $N=2$ conformal supergravity},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {253--262},
year = {1989},
volume = {79},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1989_79_2_a8/}
}
S. A. Merkulov. Local supertwistors and $N=2$ conformal supergravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 79 (1989) no. 2, pp. 253-262. http://geodesic.mathdoc.fr/item/TMF_1989_79_2_a8/
[1] Penrose R., Gen. Rel. Grav., 7 (1976), 31–52 | DOI | MR | Zbl
[2] LeBrun C., Trans. Amer. Math. Soc., 278 (1983), 209–231 | DOI | MR | Zbl
[3] Witten E., Phys. Lett., 77B (1978), 394–398 | DOI
[4] Manin Yu. I., Kalibrovochnye polya i kompleksnaya geometriya, Nauka, M., 1984 | MR
[5] LeBrun C., Class. Quantum Grav., 3 (1986), 1039–1059 | DOI | MR | Zbl
[6] Penrose R., Rindler W., Spinors and space-time, V. 2, Cambridge University Press, Cambridge, 1986 | MR
[7] Merkulov S. A., TMF, 60:2 (1984), 311–316 | MR | Zbl
[8] Baston R. J., Mason L. J., Class. Quantum Grav., 4 (1987), 815–826 | DOI | MR | Zbl
[9] Merkulov S. A., TMF, 64:3 (1985), 426–431 | MR | Zbl
[10] Merkulov S. A., YaF, 46 (1987), 1578–1589 | MR