Random vectors with the Lee–Yang property
Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 2, pp. 177-186
Cet article a éte moissonné depuis la source Math-Net.Ru
Notion of the “Lee–Yang property” is introduced on the basis of the analysis of various applications of the Lee–Yang theorem to isotropic distributions of random vectors in statistical physics and quantum field theory. A class of probability distributions enjoying this property is constructed which includes the well-known $P(\varphi)$ models of quantum field theory. A number of new inequalities is established for vectors enjoying; the Lee–Yang property.
@article{TMF_1989_78_2_a1,
author = {Yu. V. Kozitskii and N. O. Mel'nik},
title = {Random vectors with the {Lee{\textendash}Yang} property},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {177--186},
year = {1989},
volume = {78},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1989_78_2_a1/}
}
Yu. V. Kozitskii; N. O. Mel'nik. Random vectors with the Lee–Yang property. Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 2, pp. 177-186. http://geodesic.mathdoc.fr/item/TMF_1989_78_2_a1/
[1] Ryuel D., Statisticheskaya mekhanika, Mir, M., 1971
[2] Saimon B., Model $P(\varphi)_2$ evklidovoi kvantovoi teorii polya, Mir, M., 1976
[3] Newman C. M., Commun. Math. Phys., 41 (1975), 1–9 | DOI | MR
[4] Lieb E. H., Sokal A. D., Commun. Math. Phys., 80 (1981), 153–179 | DOI | MR
[5] Kozitskii Yu. V., TMF, 58:1 (1984), 96–108 | MR
[6] Dunlop F., Newman C. M., Commun. Math. Phys., 44 (1975), 223–235 | DOI | MR
[7] Iliev L., Nuli na tseli funktsii, Izdatelstvo na B'lgarskata akademiya na naukite, Sofiya, 1979
[8] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 2. Garmonicheskii analiz, samosopryazhennost, Mir, M., 1978 | MR
[9] Pólya G., Acta Math., 48 (1926), 305–317 | DOI | MR | Zbl