Symmetric spaces and Higgs models in the method of dimensional reduction.
Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 1, pp. 58-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Gauge models are studied which are obtained by means of dimensional reduction from pure gauge theories in multidimensional spaces of the type $M=M^4\times G/H$ where $G/H$ is a compact symmetric space. A general method of calculating scalar field potentials of the reduced theory is developed. The potentials turn out to be of the Higgs type.
@article{TMF_1989_78_1_a5,
     author = {I. P. Volobuev and Yu. A. Kubyshin and Zh. M. Mourao},
     title = {Symmetric spaces and {Higgs} models in~the method of~dimensional reduction.},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {58--69},
     year = {1989},
     volume = {78},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1989_78_1_a5/}
}
TY  - JOUR
AU  - I. P. Volobuev
AU  - Yu. A. Kubyshin
AU  - Zh. M. Mourao
TI  - Symmetric spaces and Higgs models in the method of dimensional reduction.
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1989
SP  - 58
EP  - 69
VL  - 78
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1989_78_1_a5/
LA  - ru
ID  - TMF_1989_78_1_a5
ER  - 
%0 Journal Article
%A I. P. Volobuev
%A Yu. A. Kubyshin
%A Zh. M. Mourao
%T Symmetric spaces and Higgs models in the method of dimensional reduction.
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1989
%P 58-69
%V 78
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1989_78_1_a5/
%G ru
%F TMF_1989_78_1_a5
I. P. Volobuev; Yu. A. Kubyshin; Zh. M. Mourao. Symmetric spaces and Higgs models in the method of dimensional reduction.. Teoretičeskaâ i matematičeskaâ fizika, Tome 78 (1989) no. 1, pp. 58-69. http://geodesic.mathdoc.fr/item/TMF_1989_78_1_a5/

[1] Forgacs P., Manton N. S., Commun. Math. Phys., 72:1 (1980), 15–34 | DOI | MR

[2] Coquereaux R., Jadczyk A., Commun. Math. Phys., 90:1 (1983), 79–100 | DOI | MR | Zbl

[3] Volobuev I. P., Rudolf G., TMF, 62:3 (1985), 388–399 | MR | Zbl

[4] Manton N. S., Nucl. Phys., B158:1 (1979), 141–153 | DOI | MR

[5] Chapline G., Manton N. S., Nucl. Phys., B184:3 (1981), 391–405 | DOI

[6] Farakos K., Koutsoumbas G., Surridge M., Zoupanos G., Dimensional reduction and the Higgs potential, CERN preprint TH. 4533/86, CERN, 1986 | MR

[7] Volobuev I. P., Kubyshin Yu. A., TMF, 68:2 (1986), 225–235 ; 3, 368–380 | MR | Zbl | MR | Zbl

[8] Volf Dzh., Prostranstva postoyannoi krivizny, Nauka, M., 1982 ; Хелгассон С., Дифференциальная геометрия и симметрические пространства, Мир, М., 1964 | MR

[9] Gremmer E., Scherk I., Nucl. Phys., B118:1/2 (1977), 61–75 ; Salam A., Strathdee I., Ann. Phys., 141:2 (1982), 316–352 | DOI | DOI | MR

[10] Volobuev I. P., Kubyshin Yu. A., Pisma v ZhETF, 45:10 (1987), 455–457 | MR

[11] Schwarz A. S., Commun. Math. Phys., 56:1 (1977), 79–86 | DOI | MR | Zbl

[12] Kirillov A. A., Elementy teorii predstavlenii, Nauka, M., 1978 | MR | Zbl

[13] Dynkin E. B., Matem. sb., 30:2 (1952), 349–462 | MR | Zbl

[14] Goto M., Grosskhans F., Poluprostye algebry Li, Mir, M., 1981 | MR | Zbl

[15] Pilch K., Schellekens A. N., Nucl. Phys., B256:1 (1985), 109–129 | DOI | MR