New mechanism of particle acceleration and relativistic analog of the Fermi–Ulam model
Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 1, pp. 154-160
Cet article a éte moissonné depuis la source Math-Net.Ru
An investigation is made of a relativistic analog of the Fermi–Ulam model in which a relativistic particle moves vertically and freely between parallel horizontal infinitely heavy walls that move in the vertical direction in accordance with a periodic law, the particle interacting with the walls in a collision in accordance with the law of elastic impact. The possibility of unlimited growth of the energy of the particle is proved; specifically, unbounded growth of the energy is realized for all initial data in some open set, and the asymptotic behavior of such growth is found.
@article{TMF_1988_77_1_a13,
author = {L. D. Pustyl'nikov},
title = {New mechanism of particle acceleration and relativistic analog of the {Fermi{\textendash}Ulam} model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {154--160},
year = {1988},
volume = {77},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a13/}
}
TY - JOUR AU - L. D. Pustyl'nikov TI - New mechanism of particle acceleration and relativistic analog of the Fermi–Ulam model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1988 SP - 154 EP - 160 VL - 77 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a13/ LA - ru ID - TMF_1988_77_1_a13 ER -
L. D. Pustyl'nikov. New mechanism of particle acceleration and relativistic analog of the Fermi–Ulam model. Teoretičeskaâ i matematičeskaâ fizika, Tome 77 (1988) no. 1, pp. 154-160. http://geodesic.mathdoc.fr/item/TMF_1988_77_1_a13/
[1] Fermi E., Phys. Rev., 75:8 (1949), 1169–1174 | DOI | Zbl
[2] Ulam S., “On some statistical properties of dynamical systems”, Proc. 4 Berkely Sympos. on Math, and Probabil., V. 3, Berkely–Los Angeles, 1961, 315 | MR | Zbl
[3] Pustylnikov L. D., DAN SSSR, 292:3 (1987), 549–553 | MR | Zbl
[4] Brin M. I., Pesin Ya. B., Izv. AN SSSR, ser. matem., 38:1 (1974), 170–212 | MR | Zbl
[5] Denjoy A., J. Math. Pures et Appl., 11 (1932), 333–375
[6] Landau L. D., Lifshits E. M., Teoriya polya, Fizmatgiz, M., 1962 | MR
[7] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR