Evolution of a quantum system subject to continuous measurement
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 1, pp. 41-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The path integration method is used to describe the evolution of a quantum system subject to continuous (in time) measurement. It is shown that nonselective continuous measurement leads to a continuous increase in the degree of mixing of states. A scheme is developed for calculating a family of “partial” evolution operators that describe the dynamics of the system with allowance for the back reaction of the instrument, and a generalized unitarity condition for them is formulated. The general results are then applied to the case of spectral measurements of a harmonic oscillator. The nature of the mixing which arises as a result of such measurements is analyzed.
@article{TMF_1988_75_1_a3,
     author = {M. B. Menskii},
     title = {Evolution of a~quantum system subject to continuous measurement},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {41--52},
     year = {1988},
     volume = {75},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_1_a3/}
}
TY  - JOUR
AU  - M. B. Menskii
TI  - Evolution of a quantum system subject to continuous measurement
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 41
EP  - 52
VL  - 75
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_75_1_a3/
LA  - ru
ID  - TMF_1988_75_1_a3
ER  - 
%0 Journal Article
%A M. B. Menskii
%T Evolution of a quantum system subject to continuous measurement
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 41-52
%V 75
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1988_75_1_a3/
%G ru
%F TMF_1988_75_1_a3
M. B. Menskii. Evolution of a quantum system subject to continuous measurement. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 1, pp. 41-52. http://geodesic.mathdoc.fr/item/TMF_1988_75_1_a3/

[1] Braginskii V. B., Fizicheskie eksperimenty s probnymi telami, Nauka, M., 1970

[2] Braginskii V. B., Vorontsov Yu. I., UFN, 114:1 (1974), 41–53 | DOI

[3] Unruh W. G., Phys. Rev. D, 17:4 (1978), 1180–1181 | DOI

[4] Khelstrom K., Kvantovaya teoriya proverki gipotez i otsenivaniya, Mir, M., 1979

[5] Kholevo A. S., Veroyatnostnye i statisticheskie aspekty kvantovoi teorii, Nauka, M., 1980 | MR | Zbl

[6] Caves C., Thorne K. S., Drever R. S. P., Sandberg V. D., Zimmermann M., Rev. Mod. Phys., 52:2 (1980), 341–392 | DOI

[7] Caves C., Quant. Optics, Experimental Gravity and Measurement Theory, Proceed. NATO Advanced Study Inst. (Bad Windheim, 16–29 Aug. 1981), 567–626

[8] Vorontsov Yu. I., UFN, 133:2 (1981), 351–365 | DOI | MR

[9] Grib A. A., UFN, 142:4 (1984), 619–634 | DOI | MR

[10] Mensky M. B., Phys. Rev. D, 20:2 (1979), 384–387 | DOI

[11] Menskii M. B., ZhETF, 77:4 (1979), 1326–1339

[12] Menskii M. B., Gruppa putei: izmereniya, polya, chastitsy, Nauka, M., 1983 | MR

[13] Khalili F. Ya., Vestn. Mosk. un-ta, ser. 3, fizika, astr., 22:1 (1981), 37–42

[14] Barchielli A., Lanz L., Prosperi G. M., Nuovo Cim., B72:1 (1982), 79–121 | DOI | MR

[15] Caves C., Phys. Rev. D, 33:6 (1986), 1643–1665 | DOI | MR

[16] Feinman R., Khibs A., Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | MR

[17] Mensky M. B., Proceed. 3d Sem. on Quant. Gravity (Oct. 23–25, 1984, Moscow, USSR), World Scientific, Singapore, 1985, 188–204 | MR

[18] Kraus K., Lecture Notes in Phys., 190, 1983 | DOI | MR | Zbl