The $\rm O^-$ nonet and solution of the $U(1)$ problem in a nonperturbative approximation of quantum chromodynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 2, pp. 171-179
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the model of dynamical breaking of chiral symmetry by the infrared singularities of QCD [1], the nonet of pseudoscalar mesons $(\pi, K, \eta, \eta')$ is described in terms of quasi–Goldstone bosons. The decay constant of the nonet is calculated in the chiral limit. The $U(1)$ problem is solved; the mass of the $\eta'$ meson in the chiral limit and the topological susceptibility are calculated, and the physical masses of the $\eta$ and $\eta'$ mesons are determined together with the pseudoscalar mixing angle by means of chiral perturbation theory.
@article{TMF_1988_74_2_a1,
     author = {M. L. Nekrasov and V. E. Rochev},
     title = {The $\rm O^-$ nonet and~solution of the~$U(1)$ problem in~a~nonperturbative approximation of~quantum chromodynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {171--179},
     year = {1988},
     volume = {74},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_74_2_a1/}
}
TY  - JOUR
AU  - M. L. Nekrasov
AU  - V. E. Rochev
TI  - The $\rm O^-$ nonet and solution of the $U(1)$ problem in a nonperturbative approximation of quantum chromodynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 171
EP  - 179
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_74_2_a1/
LA  - ru
ID  - TMF_1988_74_2_a1
ER  - 
%0 Journal Article
%A M. L. Nekrasov
%A V. E. Rochev
%T The $\rm O^-$ nonet and solution of the $U(1)$ problem in a nonperturbative approximation of quantum chromodynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 171-179
%V 74
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1988_74_2_a1/
%G ru
%F TMF_1988_74_2_a1
M. L. Nekrasov; V. E. Rochev. The $\rm O^-$ nonet and solution of the $U(1)$ problem in a nonperturbative approximation of quantum chromodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 2, pp. 171-179. http://geodesic.mathdoc.fr/item/TMF_1988_74_2_a1/

[1] Nekrasov M. L., Rochev V. E., TMF, 70:2 (1987), 211–217

[2] Witten E., Nucl. Phys., B156:2 (1979), 269–283 | DOI | MR

[3] Alekseev A. I., Arbuzov B. A., Baikov V. A., TMF, 52:2 (1982), 187–198

[4] Christos G. A., Phys. Rep., 116:5 (1984), 251–336 | DOI | MR

[5] Pervushin V. N., Ebert D., TMF, 36:3 (1978), 313–323 ; Славнов А. А., ТМФ, 54:1 (1983), 52–56 | MR | MR

[6] Kulikov A. V., Nekrasov M. L., Rochev V. E., Trudy rabochego soveschaniya «Infrakrasnoe povedenie v kvantovoi khromodinamike», Izd-vo TGU, Tbilisi, 1985, 71–82

[7] Di Vecchia P. et al., Phys. Lett., 108B:4–5 (1982), 323–326 | DOI

[8] Makhaldiani N. V., Myuller-Proisker M., Pisma v ZhETF, 37:9 (1983), 440–443

[9] Woit P., Phys. Rev. Lett., 51:8 (1983), 638–641 | DOI

[10] Teper M., Phys. Lett., 171B:1 (1986), 86–94 | DOI | MR

[11] Filippov A. T., YaF, 29:4 (1979), 1035–1053; Апель В. Д. и др., ЯФ, 30:2 (1979), 366–372; Weinstein A. et al., Phys. Rev., 28:11 (1983), 2896–2899